50 research outputs found

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon

    Multibeam Joint Processing in Satellite Communications

    Get PDF
    Cooperative Satellite Communications (SatComs) involve multi-antenna satellites enabled for the joint transmission and reception of signals. This joint processing of baseband signals is realized amongst the distinct but interconnected antennas. Advanced signal processing techniques –namely precoding and Multiuser Detection (MUD)– are herein examined in the multibeam satellite context. The aim of this thesis is to establish the prominence of such methods in the next generation of broadband satellite networks. To this end, two approaches are followed. On one hand, the performance of the well established and theoretically concrete MUD is analysed over the satellite environments. On the other, optimal signal processing designs are developed and evaluated for the forward link. In more detail, the present dissertation begins by introducing the topic of multibeam joint processing. Thus, the most significant practical constraints that hinder the application of advanced interference mitigation techniques in satellite networks are identified and discussed. Prior to presenting the contributions of this work, the multi-antenna joint processing problem is formulated using the generic Multiuser (MU) Multiple InputMultiple Output (MIMO) baseband signal model. This model is also extended to apply in the SatComs context. A detailed presentation of the related work, starting from a generic signal processing perspective and then focusing on the SatComs field, is then given. With this review, the main open research topics are identified. Following the comprehensive literature review, the first contribution of this work, is presented. This involves the performance evaluation of MUD in the Return Link (RL) of multiuser multibeam SatComs systems. Novel, analytical expressions are derived to describe the information theoretic channel capacity as well as the performance of practical receivers over realistic satellite channels. Based on the derived formulas, significant insights for the design of the RL of next generation cooperative satellite systems are provided. In the remaining of this thesis, the focus is set on the Forward Link (FL) of multibeam SatComs, where precoding, combined with aggressive frequency reuse configurations, are proposed to enhance the offered throughput. In this context, the alleviation of practical constraints imposed by the satellite channel is the main research challenge. Focusing on the rigid framing structure of the legacy SatCom standards, the fundamental frame-based precoding problem is examined. Based on the necessity to serve multiple users by a single transmission, the connection of the frame-based precoding and the fundamental signal processing problem of physical layer multigroup multicasting is established. In this framework and to account for the power limitations imposed by a dedicated High Power Amplifier (HPA) per transmit element, a novel solution for multigroup multicasting under Per Anntenna Constraints (PACs) is derived. Therefore, the gains offered by multigroup multicasting in frame-based systems are quantified over an accurate simulation setting. Finally, advanced multicast and interference aware scheduling algorithms are proposed to glean significant gains in the rich multiuser satellite environment. The thesis concludes with the main research findings and the identification of new research challenges, which will pave the way for the deployment of cooperative multibeam satellite systems

    Generic Optimization of Linear Precoding in Multibeam Satellite Systems

    Get PDF
    Multibeam satellite systems have been employed to provide interactive broadband services to geographical areas under-served by terrestrial infrastructure. In this context, this paper studies joint multiuser linear precoding design in the forward link of fixed multibeam satellite systems. We provide a generic optimization framework for linear precoding design to handle any objective functions of data rate with general linear and nonlinear power constraints. To achieve this, an iterative algorithm which optimizes the precoding vectors and power allocation alternatingly is proposed and most importantly, the proposed algorithm is proved to always converge. The proposed optimization algorithm is also applicable to nonlinear dirty paper coding. In addition, the aforementioned problems and algorithms are extended to the case that each terminal has multiple co-polarization or dual-polarization antennas. Simulation results demonstrate substantial performance improvement of the proposed schemes over conventional multibeam satellite systems, zero-forcing and regularized zero-forcing precoding schemes in terms of meeting the traffic demand. The performance of the proposed linear precoding scheme is also shown to be very close to the dirty paper coding

    MIMO CDMA-based Optical SATCOMs: A New Solution

    Full text link
    A new scheme for MIMO CDMA-based optical satellite communications (OSATCOMs) is presented. Three independent problems are described for up-link and down- link in terms of two distinguished optimization problems. At first, in up-link, Pulse-width optimization is proposed to reduce dispersions over fibers as the terrestrial part. This is performed for return-to-zero (RZ) modulation that is supposed to be used as an example in here. This is carried out by solving the first optimization problem, while minimizing the probability of overlapping for the Gaussian pulses that are used to produce RZ. Some constraints are assumed such as a threshold for the peak-to-average power ratio (PAPR). In down-link, the second and the third problems are discussed as follows, jointly as a closed-form solution. Solving the second optimization problem, an objective function is obtained, namely the MIMO CDMA-based satellite weight-matrix as a conventional adaptive beam-former. The Satellite link is stablished over flat un-correlated Nakagami-m/Suzuki fading channels as the second problem. On the other hand, the mentioned optimization problem is robustly solved as the third important problem, while considering inter-cell interferences in the multi-cell scenario. Robust solution is performed due to the partial knowledge of each cell from the others in which the link capacity is maximized. Analytical results are conducted to investigate the merit of system.Comment: IEEE PCITC 2015 (15-17 Oct, India

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces
    corecore