838 research outputs found

    An Accurate Approximation to the Distribution of the Sum of Equally Correlated Nakagami-m Envelopes and its Application in Equal Gain Diversity Receivers

    Full text link
    We present a novel and accurate approximation for the distribution of the sum of equally correlated Nakagami-m variates. Ascertaining on this result we study the performance of Equal Gain Combining (EGC) receivers, operating over equally correlating fading channels. Numerical results and simulations show the accuracy of the proposed approximation and the validity of the mathematical analysis

    An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers

    Full text link
    There are several cases in wireless communications theory where the statistics of the sum of independent or correlated Nakagami-m random variables (RVs) is necessary to be known. However, a closed-form solution to the distribution of this sum does not exist when the number of constituent RVs exceeds two, even for the special case of Rayleigh fading. In this paper, we present an efficient closed-form approximation for the distribution of the sum of arbitrary correlated Nakagami-m envelopes with identical and integer fading parameters. The distribution becomes exact for maximal correlation, while the tightness of the proposed approximation is validated statistically by using the Chi-square and the Kolmogorov-Smirnov goodness-of-fit tests. As an application, the approximation is used to study the performance of equal-gain combining (EGC) systems operating over arbitrary correlated Nakagami-m fading channels, by utilizing the available analytical results for the error-rate performance of an equivalent maximal-ratio combining (MRC) system

    Performance and Detection of M-ary Frequency Shift Keying in Triple Layer Wireless Sensor Network

    Full text link
    This paper proposes an innovative triple layer Wireless Sensor Network (WSN) system, which monitors M-ary events like temperature, pressure, humidity, etc. with the help of geographically distributed sensors. The sensors convey signals to the fusion centre using M-ary Frequency Shift Keying (MFSK)modulation scheme over independent Rayleigh fading channels. At the fusion centre, detection takes place with the help of Selection Combining (SC) diversity scheme, which assures a simple and economical receiver circuitry. With the aid of various simulations, the performance and efficacy of the system has been analyzed by varying modulation levels, number of local sensors and probability of correct detection by the sensors. The study endeavors to prove that triple layer WSN system is an economical and dependable system capable of correct detection of M-ary events by integrating frequency diversity together with antenna diversity.Comment: 13 pages; International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 201

    On the Sum of Fisher-Snedecor F Variates and its Application to Maximal-Ratio Combining

    Full text link
    Capitalizing on the recently proposed Fisher-Snedecor F composite fading model, in this letter, we investigate the sum of independent but not identically distributed (i.n.i.d.) Fisher-Snedecor F variates. First, a novel closed-form expression is derived for the moment generating function of the instantaneous signal-to-noise ratio. Based on this, the corresponding probability density function and cumulative distribution function of the sum of i.n.i.d. Fisher- Snedecor F variates are derived, which are subsequently employed in the analysis of multiple branch maximal-ratio combining (MRC). Specifically, we investigate the impact of multipath and shadowed fading on the outage probability and outage capacity of MRC based receivers. In addition, we derive exact closed-form expressions for the average bit error rate of coherent binary modulation schemes followed by an asymptotic analysis which provides further insights into the effect of the system parameters on the overall performance. Importantly, it is shown that the effect of multipath fading on the system performance is more pronounced than that of shadowing.Comment: 5 pages, 3 figure

    Dual-hop transmissions with fixed-gain relays over Generalized-Gamma fading channels

    Get PDF
    In this paper, a study on the end-to-end performance of dual-hop wireless communication systems equipped with fixed-gain relays and operating over Generalized-Gamma (GG) fading channels is presented. A novel closed form expression for the moments of the end-to-end signal-to-noise ratio (SNR) is derived. The average bit error probability for coherent and non-coherent modulation schemes as well as the end-to-end outage probability of the considered system are also studied. Extensive numerically evaluated and computer simulations results are presented that verify the accuracy of the proposed mathematical analysis.\u
    • …
    corecore