19,695 research outputs found

    Performance analysis and optimal selection of large mean-variance portfolios under estimation risk

    Full text link
    We study the consistency of sample mean-variance portfolios of arbitrarily high dimension that are based on Bayesian or shrinkage estimation of the input parameters as well as weighted sampling. In an asymptotic setting where the number of assets remains comparable in magnitude to the sample size, we provide a characterization of the estimation risk by providing deterministic equivalents of the portfolio out-of-sample performance in terms of the underlying investment scenario. The previous estimates represent a means of quantifying the amount of risk underestimation and return overestimation of improved portfolio constructions beyond standard ones. Well-known for the latter, if not corrected, these deviations lead to inaccurate and overly optimistic Sharpe-based investment decisions. Our results are based on recent contributions in the field of random matrix theory. Along with the asymptotic analysis, the analytical framework allows us to find bias corrections improving on the achieved out-of-sample performance of typical portfolio constructions. Some numerical simulations validate our theoretical findings

    Portfolio choice and estimation risk : a comparison of Bayesian approaches to resampled efficiency

    Get PDF
    Estimation risk is known to have a huge impact on mean/variance (MV) optimized portfolios, which is one of the primary reasons to make standard Markowitz optimization unfeasible in practice. Several approaches to incorporate estimation risk into portfolio selection are suggested in the earlier literature. These papers regularly discuss heuristic approaches (e.g., placing restrictions on portfolio weights) and Bayesian estimators. Among the Bayesian class of estimators, we will focus in this paper on the Bayes/Stein estimator developed by Jorion (1985, 1986), which is probably the most popular estimator. We will show that optimal portfolios based on the Bayes/Stein estimator correspond to portfolios on the original mean-variance efficient frontier with a higher risk aversion. We quantify this increase in risk aversion. Furthermore, we review a relatively new approach introduced by Michaud (1998), resampling efficiency. Michaud argues that the limitations of MV efficiency in practice generally derive from a lack of statistical understanding of MV optimization. He advocates a statistical view of MV optimization that leads to new procedures that can reduce estimation risk. Resampling efficiency has been contrasted to standard Markowitz portfolios until now, but not to other approaches which explicitly incorporate estimation risk. This paper attempts to fill this gap. Optimal portfolios based on the Bayes/Stein estimator and resampling efficiency are compared in an empirical out-of-sample study in terms of their Sharpe ratio and in terms of stochastic dominance

    Real estate portfolio construction and estimation risk

    Get PDF
    The use of MPT in the construction real estate portfolios has two serious limitations when used in an ex-ante framework: (1) the intertemporal instability of the portfolio weights and (2) the sharp deterioration in performance of the optimal portfolios outside the sample period used to estimate asset mean returns. Both problems can be traced to wide fluctuations in sample means Jorion (1985). Thus the use of a procedure that ignores the estimation risk due to the uncertain in mean returns is likely to produce sub-optimal results in subsequent periods. This suggests that the consideration of the issue of estimation risk is crucial in the use of MPT in developing a successful real estate portfolio strategy. Therefore, following Eun & Resnick (1988), this study extends previous ex-ante based studies by evaluating optimal portfolio allocations in subsequent test periods by using methods that have been proposed to reduce the effect of measurement error on optimal portfolio allocations
    • …
    corecore