2,254,941 research outputs found
A solenoidal electron spectrometer for a precision measurement of the neutron -asymmetry with ultracold neutrons
We describe an electron spectrometer designed for a precision measurement of
the neutron -asymmetry with spin-polarized ultracold neutrons. The
spectrometer consists of a 1.0-Tesla solenoidal field with two identical
multiwire proportional chamber and plastic scintillator electron detector
packages situated within 0.6-Tesla field-expansion regions. Select results from
performance studies of the spectrometer with calibration sources are reported.Comment: 30 pages, 19 figures, 1 table, submitted to NIM
Precision bounds for noisy nonlinear quantum metrology
We derive the ultimate bounds on the performance of nonlinear measurement
schemes in the presence of noise. In particular, we investigate the precision
of the second-order estimation scheme in the presence of the two most
detrimental types of noise, photon loss and phase diffusion. We find that the
second-order estimation scheme is affected by both types of noise in an
analogous way as the linear one. Moreover, we observe that for both types of
noise the gain in the phase sensitivity with respect to the linear estimation
scheme is given by a multiplicative term . Interestingly, we
also find that under certain circumstances, a careful engineering of the
environment can, in principle, improve the performance of measurement schemes
affected by phase diffusion.Comment: 9 pages, 2 figures, 1 table, 1 appendix; v3 contains an improved
analysis and a stronger precision bound for the case of photon loss;
published versio
New Method of Measuring TCP Performance of IP Network using Bio-computing
The measurement of performance of Internet Protocol IP network can be done by
Transmission Control Protocol TCP because it guarantees send data from one end
of the connection actually gets to the other end and in the same order it was
send, otherwise an error is reported. There are several methods to measure the
performance of TCP among these methods genetic algorithms, neural network, data
mining etc, all these methods have weakness and can't reach to correct measure
of TCP performance. This paper proposed a new method of measuring TCP
performance for real time IP network using Biocomputing, especially molecular
calculation because it provides wisdom results and it can exploit all
facilities of phylogentic analysis. Applying the new method at real time on
Biological Kurdish Messenger BIOKM model designed to measure the TCP
performance in two types of protocols File Transfer Protocol FTP and Internet
Relay Chat Daemon IRCD. This application gives very close result of TCP
performance comparing with TCP performance which obtains from Little's law
using same model (BIOKM), i.e. the different percentage of utilization (Busy or
traffic industry) and the idle time which are obtained from a new method base
on Bio-computing comparing with Little's law was (nearly) 0.13%.
KEYWORDS Bio-computing, TCP performance, Phylogenetic tree, Hybridized Model
(Normalized), FTP, IRCDComment: 17 Pages,10 Figures,5 Table
Compressive Sensing for Spread Spectrum Receivers
With the advent of ubiquitous computing there are two design parameters of
wireless communication devices that become very important power: efficiency and
production cost. Compressive sensing enables the receiver in such devices to
sample below the Shannon-Nyquist sampling rate, which may lead to a decrease in
the two design parameters. This paper investigates the use of Compressive
Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We
show that when using spread spectrum codes in the signal domain, the CS
measurement matrix may be simplified. This measurement scheme, named
Compressive Spread Spectrum (CSS), allows for a simple, effective receiver
design. Furthermore, we numerically evaluate the proposed receiver in terms of
bit error rate under different signal to noise ratio conditions and compare it
with other receiver structures. These numerical experiments show that though
the bit error rate performance is degraded by the subsampling in the CS-enabled
receivers, this may be remedied by including quantization in the receiver
model. We also study the computational complexity of the proposed receiver
design under different sparsity and measurement ratios. Our work shows that it
is possible to subsample a CDMA signal using CSS and that in one example the
CSS receiver outperforms the classical receiver.Comment: 11 pages, 11 figures, 1 table, accepted for publication in IEEE
Transactions on Wireless Communication
Bell's inequality violation with spins in silicon
Bell's theorem sets a boundary between the classical and quantum realms, by
providing a strict proof of the existence of entangled quantum states with no
classical counterpart. An experimental violation of Bell's inequality demands
simultaneously high fidelities in the preparation, manipulation and measurement
of multipartite quantum entangled states. For this reason the Bell signal has
been tagged as a single-number benchmark for the performance of quantum
computing devices. Here we demonstrate deterministic, on-demand generation of
two-qubit entangled states of the electron and the nuclear spin of a single
phosphorus atom embedded in a silicon nanoelectronic device. By sequentially
reading the electron and the nucleus, we show that these entangled states
violate the Bell/CHSH inequality with a Bell signal of 2.50(10). An even higher
value of 2.70(9) is obtained by mapping the parity of the two-qubit state onto
the nuclear spin, which allows for high-fidelity quantum non-demolition
measurement (QND) of the parity. Furthermore, we complement the Bell inequality
entanglement witness with full two-qubit state tomography exploiting QND
measurement, which reveals that our prepared states match the target maximally
entangled Bell states with 96\% fidelity. These experiments demonstrate
complete control of the two-qubit Hilbert space of a phosphorus atom, and show
that this system is able to maintain its simultaneously high initialization,
manipulation and measurement fidelities past the single-qubit regime.Comment: 10 pages, 3 figures, 1 table, 4 extended data figure
Low latency vision-based control for robotics : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University, Manawatu, New Zealand
In this work, the problem of controlling a high-speed dynamic tracking and interception system using computer vision as the measurement unit was explored.
High-speed control systems alone present many challenges, and these challenges are compounded when combined with the high volume of data processing required by computer vision systems. A semi-automated foosball table was chosen as the test-bed system because it combines all the challenges associated with a vision-based control system into a single platform. While computer vision is extremely useful and can solve many problems, it can also introduce many problems such as latency, the need for lens and spatial calibration, potentially high power consumption, and high cost.
The objective of this work is to explore how to implement computer vision as the measurement unit in a high-speed controller, while minimising latencies caused by the vision itself, communication interfaces, data processing/strategy, instruction execution, and actuator control. Another objective was to implement the solution in one low-latency, low power, low cost embedded system. A field programmable gate array (FPGA) system on chip (SoC), which combines programmable digital logic with a dual core ARM processor (HPS) on the same chip, was hypothesised to be capable of running the described vision-based control system.
The FPGA was used to perform streamed image pre-processing, concurrent stepper motor control and provide communication channels for user input, while the HPS performed the lens distortion mapping, intercept calculation and “strategy” control tasks, as well as controlling overall function of the system. Individual vision systems were compared for latency performance. Interception performance of the semi-automated foosball table was then tested for straight, moderate-speed shots with limited view time, and latency was artificially added to the system and the interception results for the same, centre-field shot tested with a variety of different added latencies.
The FPGA based system performed the best in both steady-state latency, and novel event detection latency tests. The developed stepper motor control modules performed well in terms of speed, smoothness, resource consumption, and versatility. They are capable of constant velocity, constant acceleration and variable acceleration profiles, as well as being completely parameterisable. The interception modules on the foosball table achieved a 100% interception rate, with a confidence interval of 95%, and reliability of 98.4%. As artificial latency was added to the system, the performance dropped in terms of overall number of successful intercepts. The decrease in performance was roughly linear with a 60% in reduction in performance caused by 100 ms of added latency. Performance dropped to 0% successful intercepts when 166 ms of latency was added.
The implications of this work are that FPGA SoC technology may, in future, enable computer vision to be used as a general purpose, high-speed measurement system for a wide variety of control problems
In-Orbit Instrument Performance Study and Calibration for POLAR Polarization Measurements
POLAR is a compact space-borne detector designed to perform reliable
measurements of the polarization for transient sources like Gamma-Ray Bursts in
the energy range 50-500keV. The instrument works based on the Compton
Scattering principle with the plastic scintillators as the main detection
material along with the multi-anode photomultiplier tube. POLAR has been
launched successfully onboard the Chinese space laboratory TG-2 on 15th
September, 2016. In order to reliably reconstruct the polarization information
a highly detailed understanding of the instrument is required for both data
analysis and Monte Carlo studies. For this purpose a full study of the in-orbit
performance was performed in order to obtain the instrument calibration
parameters such as noise, pedestal, gain nonlinearity of the electronics,
threshold, crosstalk and gain, as well as the effect of temperature on the
above parameters. Furthermore the relationship between gain and high voltage of
the multi-anode photomultiplier tube has been studied and the errors on all
measurement values are presented. Finally the typical systematic error on
polarization measurements of Gamma-Ray Bursts due to the measurement error of
the calibration parameters are estimated using Monte Carlo simulations.Comment: 43 pages, 30 figures, 1 table; Preprint accepted by NIM
- …
