12 research outputs found

    The Effect of Error Propagation on the Performance of Polar Codes Utilizing Successive Cancellation Decoding Algorithm

    Get PDF
     In this paper, we discuss and analyze the effect of error propagation on the performance polar codes decoded using the successive cancellation algorithm. We show that error propagation due to erroneous bit decision is a catastrophic issue for the successive cancellation decoding of polar codes. Even a wrong decision on a single bit may cause an abundance of successor bits to be wrongly decoded. Furthermore, we observe that the performance of polar codes is significantly improved if even single bit errors are detected and corrected before the decoding of successor bits

    Achieving the Uniform Rate Region of General Multiple Access Channels by Polar Coding

    Full text link
    We consider the problem of polar coding for transmission over mm-user multiple access channels. In the proposed scheme, all users encode their messages using a polar encoder, while a multi-user successive cancellation decoder is deployed at the receiver. The encoding is done separately across the users and is independent of the target achievable rate. For the code construction, the positions of information bits and frozen bits for each of the users are decided jointly. This is done by treating the polar transformations across all the mm users as a single polar transformation with a certain \emph{polarization base}. We characterize the resolution of achievable rates on the dominant face of the uniform rate region in terms of the number of users mm and the length of the polarization base LL. In particular, we prove that for any target rate on the dominant face, there exists an achievable rate, also on the dominant face, within the distance at most (mβˆ’1)mL\frac{(m-1)\sqrt{m}}{L} from the target rate. We then prove that the proposed MAC polar coding scheme achieves the whole uniform rate region with fine enough resolution by changing the decoding order in the multi-user successive cancellation decoder, as LL and the code block length NN grow large. The encoding and decoding complexities are O(Nlog⁑N)O(N \log N) and the asymptotic block error probability of O(2βˆ’N0.5βˆ’Ο΅)O(2^{-N^{0.5 - \epsilon}}) is guaranteed. Examples of achievable rates for the 33-user multiple access channel are provided
    corecore