12,528 research outputs found

    Carbon Nanotube Based Delay Model For High Speed Energy Efficient on Chip Data Transmission Using: Current Mode Technique

    Full text link
    Speed is a major concern for high density VLSI networks. In this paper the closed form delay model for current mode signalling in VLSI interconnects has been proposed with resistive load termination. RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The inductive effect is dominant at lower technology node is modelled into an equivalent resistance. In this model first order transfer function is designed using finite difference equation, and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. Using CNIA tool (carbon nanotube interconnect analyzer) the interconnect line parameters has been estimated at 45nm technology node. The novel proposed current mode model superiority has been validated for CNT type of material. It superiority factor remains to 66.66% as compared to voltage mode signalling. And current mode dissipates 0.015pJ energy where as VM consume 0.045pJ for a single bit transmission across the interconnect over CNT material. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.Comment: 12 Figures, appears in Electrical and Electronics Engineering: An International Journal, November 201

    Design of a Low-Power 1.65 Gbps Data Channel for HDMI Transmitter

    Full text link
    This paper presents a design of low power data channel for application in High Definition Multimedia Interface (HDMI) Transmitter circuit. The input is 10 bit parallel data and output is serial data at 1.65 Gbps. This circuit uses only a single frequency of serial clock input. All other timing signals are derived within the circuit from the serial clock. This design has dedicated lines to disable and enable all its channels within two pixel-clock periods only. A pair of disable and enable functions performed immediately after power-on of the circuit serves as the reset function. The presented design is immune to data-dependent switching spikes in supply current and pushes them in the range of serial frequency and its multiples. Thus filtering requirements are relaxed. The output stage uses a bias voltage of 2.8 volts for a receiver pull-up voltage of 3.3 volts. The reported data channel is designed using UMC 180 nm CMOS Technology. The design is modifiable for other inter-board serial interfaces like USB and LAN with different number of bits at the parallel input.Comment: TMDS, HDMI, USB, Gbps, data-dependent jitter, supply current, UMC180, low-power consumption, single serial cloc

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD

    Low Power Reversible Parallel Binary Adder/Subtractor

    Get PDF
    In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Low Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, Reversible eight-bit Parallel Binary Adder/Subtractor with Design I, Design II and Design III are proposed. In all the three design approaches, the full Adder and Subtractors are realized in a single unit as compared to only full Subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractor with Design III is efficient compared to Design I, Design II and existing design.Comment: 12 pages,VLSICS Journa

    A Novel Reconfigurable Architecture of a DSP Processor for Efficient Mapping of DSP Functions using Field Programmable DSP Arrays

    Full text link
    Development of modern integrated circuit technologies makes it feasible to develop cheaper, faster and smaller special purpose signal processing function circuits. Digital Signal processing functions are generally implemented either on ASICs with inflexibility, or on FPGAs with bottlenecks of relatively smaller utilization factor or lower speed compared to ASIC. Field Programmable DSP Array (FPDA) is the proposed DSP dedicated device, redolent to FPGA, but with basic fixed common modules (CMs) (like adders, subtractors, multipliers, scaling units, shifters) instead of CLBs. This paper introduces the development of reconfigurable system architecture with a focus on FPDA that integrates different DSP functions like DFT, FFT, DCT, FIR, IIR, and DWT etc. The switching between DSP functions is occurred by reconfiguring the interconnection between CMs. Validation of the proposed architecture has been achieved on Virtex5 FPGA. The architecture provides sufficient amount of flexibility, parallelism and scalability.Comment: 8 Pages, 12 Figures, ACM SIGARCH Computer Architecture News. arXiv admin note: substantial text overlap with arXiv:1305.325
    corecore