8 research outputs found

    Ultra-Dense Networks: Is There a Limit to Spatial Spectrum Reuse?

    Full text link
    The aggressive spatial spectrum reuse (SSR) by network densification using smaller cells has successfully driven the wireless communication industry onward in the past decades. In our future journey toward ultra-dense networks (UDNs), a fundamental question needs to be answered. Is there a limit to SSR? In other words, when we deploy thousands or millions of small cell base stations (BSs) per square kilometer, is activating all BSs on the same time/frequency resource the best strategy? In this paper, we present theoretical analyses to answer such question. In particular, we find that both the signal and interference powers become bounded in practical UDNs with a non-zero BS-to-UE antenna height difference and a finite UE density, which leads to a constant capacity scaling law. As a result, there exists an optimal SSR density that can maximize the network capacity. Hence, the limit to SSR should be considered in the operation of future UDNs.Comment: conference submission in Oct. 201

    Performance impact of idle mode capability on dense small cell networks

    Full text link
    © 1967-2012 IEEE. Very recent studies showed that in a fully loaded dense small cell network (SCN), the coverage probability performance will continuously decrease with the network densification. Such new results were captured in IEEE ComSoc Technology News with an alarming title of 'Will Densification Be the Death of 5G?' In this paper, we revisit this issue from more practical views of realistic network deployment, such as a finite number of active base stations (BSs) and user equipments (UEs), a decreasing BS transmission power with the network densification, etc. Particularly, in dense SCNs, due to an oversupply of BSs with respect to UEs, a large number of BSs can be put into idle modes without signal transmission, if there is no active UE within their coverage areas. Setting those BSs into idle modes mitigates unnecessary intercell interference and reduces energy consumption. In this paper, we investigate the performance impact of such BS idle mode capability (IMC) on dense SCNs. Different from existing work, we consider a realistic path loss model incorporating both line-of-sight (LoS) and non-LoS transmissions. Moreover, we obtain analytical results for the coverage probability, the area spectral efficiency and the energy efficiency (EE) performance for SCNs with the BS IMC and show that the performance impact of the IMC on dense SCNs is significant. As the BS density surpasses the UE density in dense SCNs, the coverage probability will continuously increase toward one, addressing previous concerns on 'the death of 5G'. Finally, the performance improvement in terms of the EE performance is also investigated for dense SCNs using practical energy models developed in the Green-Touch project

    Performance impact of idle mode capability on dense small cell networks

    Full text link
    © 1967-2012 IEEE. Very recent studies showed that in a fully loaded dense small cell network (SCN), the coverage probability performance will continuously decrease with the network densification. Such new results were captured in IEEE ComSoc Technology News with an alarming title of 'Will Densification Be the Death of 5G?' In this paper, we revisit this issue from more practical views of realistic network deployment, such as a finite number of active base stations (BSs) and user equipments (UEs), a decreasing BS transmission power with the network densification, etc. Particularly, in dense SCNs, due to an oversupply of BSs with respect to UEs, a large number of BSs can be put into idle modes without signal transmission, if there is no active UE within their coverage areas. Setting those BSs into idle modes mitigates unnecessary intercell interference and reduces energy consumption. In this paper, we investigate the performance impact of such BS idle mode capability (IMC) on dense SCNs. Different from existing work, we consider a realistic path loss model incorporating both line-of-sight (LoS) and non-LoS transmissions. Moreover, we obtain analytical results for the coverage probability, the area spectral efficiency and the energy efficiency (EE) performance for SCNs with the BS IMC and show that the performance impact of the IMC on dense SCNs is significant. As the BS density surpasses the UE density in dense SCNs, the coverage probability will continuously increase toward one, addressing previous concerns on 'the death of 5G'. Finally, the performance improvement in terms of the EE performance is also investigated for dense SCNs using practical energy models developed in the Green-Touch project
    corecore