66 research outputs found

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    C4 - TOC

    Get PDF

    A cost function for similarity-based hierarchical clustering

    Full text link
    The development of algorithms for hierarchical clustering has been hampered by a shortage of precise objective functions. To help address this situation, we introduce a simple cost function on hierarchies over a set of points, given pairwise similarities between those points. We show that this criterion behaves sensibly in canonical instances and that it admits a top-down construction procedure with a provably good approximation ratio

    Robust hierarchical k-center clustering

    Get PDF
    One of the most popular and widely used methods for data clustering is hierarchical clustering. This clustering technique has proved useful to reveal interesting structure in the data in several applications ranging from computational biology to computer vision. Robustness is an important feature of a clustering technique if we require the clustering to be stable against small perturbations in the input data. In most applications, getting a clustering output that is robust against adversarial outliers or stochastic noise is a necessary condition for the applicability and effectiveness of the clustering technique. This is even more critical in hierarchical clustering where a small change at the bottom of the hierarchy may propagate all the way through to the top. Despite all the previous work [2, 3, 6, 8], our theoretical understanding of robust hierarchical clustering is still limited and several hierarchical clustering algorithms are not known to satisfy such robustness properties. In this paper, we study the limits of robust hierarchical k-center clustering by introducing the concept of universal hierarchical clustering and provide (almost) tight lower and upper bounds for the robust hierarchical k-center clustering problem with outliers and variants of the stochastic clustering problem. Most importantly we present a constant-factor approximation for optimal hierarchical k-center with at most z outliers using a universal set of at most O(z2) set of outliers and show that this result is tight. Moreover we show the necessity of using a universal set of outliers in order to compute an approximately optimal hierarchical k-center with a diffierent set of outliers for each k

    General Bounds for Incremental Maximization

    Full text link
    We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈Nk\in\mathbb{N} that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all kk between the incremental solution after kk steps and an optimum solution of cardinality kk. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.6182.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.182.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.581.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (bb-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.3132.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.Comment: fixed typo

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou
    • …
    corecore