3 research outputs found

    Performance evaluation of wireless sensor networks for mobile sink considering consumed energy metric

    Get PDF
    Sensor networks are a sensing, computing and communication infrastructure that are able to observe and respond to phenomena in the natural environment and in our physical and cyber infrastructure. The sensors themselves can range from small passive micro-sensors to larger scale, controllable weather-sensing platforms. To reduce the consumed energy of a large scale sensor network, we consider a mobile sink node in the observing area. In this work, we investigate how the sensor network performs in the case when the sink node moves. We compare the simulation results for two cases: when the sink node is mobile and stationary considering lattice and random topologies using AODV protocol. The simulation results have shown that for the case of mobile sink, the consumed energy is better than the stationary sink (about half of stationary sink in lattice topology). Also for mobile sink, the consumed energy of lattice topology is better than random topologyPeer ReviewedPostprint (published version

    A simulation system for WSNs as a digital eco-system approach considering goodput metric

    Get PDF
    Sensor networks are a sensing, computing and communication infrastructure that are able to observe and respond to phenomena in the natural environment and in our physical and cyber infrastructure. The sensors themselves can range from small passive micro-sensors to larger scale, controllable weather-sensing platforms. In order to simulate Wireless Sensor Networks (WSNs), we implemented a simulation system as a Digital Eco-System (DES) approach. We implement our system as a multi-modal system considering different topologies, radio models, routing protocols, MAC protocols, and different number of nodes. However, in this work, we consider the goodput metric and evaluate the performance of WSN for AODV and TwoRayGround model considering different topologies and number of nodes. To reduce the consumed energy of a large scale WSN network, we consider a mobile sink node in the observing area. We investigate how the sensor network performs in the case when the sink node moves. We compare the simulation results for two cases: when the sink node is mobile and stationary. The simulation results have shown that for the case of mobile sink, the goodput of random topology is better than the case of lattice. In the case of stationary sink, the goodput is unstable. In case of mobile sink, the goodput is stable and better than in case of stationary sinkPeer ReviewedPostprint (published version
    corecore