9 research outputs found

    Connectivity-Aware Routing in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) is a promising emerging technology that enables a wide range of appealing applications in road safety, traffic management, and passengers and driver comfort. The deployment of VANETs to enable vehicular Internet-based services and mobile data offloading is also envisioned to be a promising solution for the great demand of mobile Internet access. However, developing reliable and efficient routing protocols is one of the key challenges in VANETs due to the high vehicle mobility and frequent network topology changes. In this thesis, we highlight the routing challenges in VANETs with a focus on position-based routing (PBR), as a well-recognized routing paradigm in the vehicular environment. As the current PBR protocols do not support VANET users with connectivity information, our goal is to design an efficient routing protocol for VANETs that dynamically finds long life paths, with reduced delivery delay, and supports vehicles with instant information about connectivity to the infrastructure. The focus of this thesis will be on predicting vehicular mobility to estimate inter-vehicle link duration in order to support routing protocols with proactive connectivity information for a better routing performance. Via three stages to meet our goal, we propose three novel routing protocols to estimate both broad and comprehensive connectivities in VANETs: iCAR, iCAR-II, and D-CAR. iCAR supports VANET users with instant broad connectivity information to surrounding road intersections, iCAR-II uses cellular network channels for comprehensive connectivity awareness to Roadside Units (RSUs), and finally D-CAR supports users with instant comprehensive connectivity information without the assistance of other networks. Detailed analysis and simulation based evaluations of our proposed protocols demonstrate the validity of using VANETs for Internet-based services and mobile data offloading in addition to the significant improvement of VANETs performance in terms of packet delivery ratio and end-to-end delay

    Link-Layer Cooperative Communication in Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are a special kind of communication networks and possess unique characteristics as compared with general mobile ad hoc networks (MANETs), where vehicles communicate with each other or with stationary road side units. Hence, directly applying the existing communication protocols designed for MANETs may not be reliable and efficient in VANETs. Thus, this thesis presents link-layer cooperative frameworks to improve transmission reliability and network throughput over distributed TDMA MAC protocols for VANETs. We present a link-layer node cooperation scheme for VANETs, referred to as Cooperative ADHOC MAC (CAH-MAC). In CAH-MAC, neighboring nodes cooperate to utilize unused time slots to retransmit failed packets. Throughput improvement is achieved by using idle time slots that are wasted in the absence of node cooperation. In addition, as a packet is retransmitted earlier by a relay node, transmission delay and packet dropping rate are reduced. We study the effects of a dynamic networking environment on the performance of CAH-MAC. It is observed that, system performance degrades due to cooperation collisions. To tackle this challenge, we present an enhanced CAH-MAC (eCAH-MAC) scheme. In eCAH-MAC, using different types of packet and by delaying or suspending some relay transmissions, cooperation collisions can be avoided and cooperation opportunities can be efficiently utilize without disrupting the normal operations of the distributed TDMA MAC. We propose a node cooperation based makeup strategy for vehicular networks, referred to as cooperative relay broadcasting (CRB), such that neighboring nodes proactively rebroadcast the packet from a source node. An optimization framework is developed to provide an upper bound on the CRB performance with accurate channel information. Further, we propose a channel prediction scheme based on a two-state first-order Markov chain, to select the best relaying node for CRB. As packets are repeatedly broadcasted by the neighboring nodes before they expire, the proposed CRB framework provides a more reliable broadcast service as compared with existing approaches. The proposed node cooperation frameworks enhance the performance of distributed TDMA MAC and make it more robust to tackle VANET's dynamic networking conditions

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Medium Access Control, Packet Routing, and Internet Gateway Placement in Vehicular Ad Hoc Networks

    Get PDF
    Road accidents represent a serious social problem and are one of the leading causes of human death and disability on a global scale. To reduce the risk and severity of a road accident, a variety of new safety applications can be realized through wireless communications among vehicles driving nearby each other, or among vehicles and especially deployed road side units (RSUs), a technology known as a vehicular ad hoc network (VANET). Most of the VANET-enabled safety applications are based on broadcasting of safety messages by vehicles or RSUs, either periodically or in case of an unexpected event, such as a hard brake or dangerous road condition detection. Each broadcast safety message should be successfully delivered to the surrounding vehicles and RSUs without any excess delay, which is one of the main functions of a medium access control (MAC) protocol proposed for VANETs. This thesis presents VeMAC, a new multichannel time division multiple access (TDMA) protocol specifically designed to support the high priority safety applications in a VANET scenario. The ability of the VeMAC protocol to deliver periodic and event-driven safety messages in VANETs is demonstrated by a detailed delivery delay analysis, including queueing and service delays, for both types of safety messages. As well, computer simulations are conducted by using MATLAB, the network simulator ns-2, and the microscopic vehicle traffic simulator VISSIM, in order to evaluate the performance of the VeMAC protocol, in comparison with the IEEE 802.11p standard and the ADHOC MAC protocol (another TDMA protocol proposed for ad hoc networks). A real city scenario is simulated and different performance metrics are evaluated, including the network goodput, protocol overhead, channel utilization, protocol fairness, probability of a transmission collision, and safety message delivery delay. It is shown that the VeMAC protocol considerably outperforms the existing MAC schemes, which have significant limitations in supporting VANET safety applications. In addition to enhancing road safety, in-vehicle Internet access is one of the main applications of VANETs, which aims at providing the vehicle passengers with a low-cost access to the Internet via on-road gateways. This thesis presents a new strategy for deploying Internet gateways on the roads, in order to minimize the total cost of gateway deployment, while ensuring that a vehicle can connect to an Internet gateway (using multihop communications) with a probability greater than a specified threshold. This cost minimization problem is formulated by using binary integer programming, and applied for optimal gateway placement in a real city scenario. To the best of our knowledge, no previous strategy for gateway deployment has considered the probability of multihop connectivity among the vehicles and the deployed gateways. In order to allow a vehicle to discover the existence of an Internet gateway and to communicate with the gateway via multihops, a novel data packet routing scheme is proposed based on the VeMAC protocol. The performance of this cross-layer design is evaluated for a multichannel VANET in a highway scenario, mainly in terms of the end-to-end packet delivery delay. The packet queueing at each relay vehicle is considered in the end-to-end delay analysis, and numerical results are presented to study the effect of various parameters, such as the vehicle density and the packet arrival rate, on the performance metrics. The proposed VeMAC protocol is a promising candidate for MAC in VANETs, which can realize many advanced safety applications to enhance the public safety standards and improve the safety level of drivers/passengers and pedestrians on roads. On the other hand, the proposed gateway placement strategy and packet routing scheme represent a strong step toward providing reliable and ubiquitous in-vehicle Internet connectivity

    Adaptive Medium Access Control for Internet-of-Things Enabled Mobile Ad Hoc Networks

    Get PDF
    An Internet-of-Things (IoT) enabled mobile ad hoc network (MANET) is a self organized distributed wireless network, in which nodes can randomly move making the network traffic load vary with time. A medium access control (MAC) protocol, as a most important mechanism of radio resource management, is required in MANETs to coordinate nodes’ access to the wireless channel in a distributed way to satisfy their quality of service (QoS) requirements. However, the distinctive characteristics of IoT-enabled MANETs, i.e., distributed network operation, varying network traffic load, heterogeneous QoS demands, and increased interference level with a large number of nodes and extended communication distances, pose technical challenges on MAC. An efficient MAC solution should achieve consistently maximal QoS performance by adapting to the network traffic load variations, and be scalable to an increasing number of nodes in a multi-hop communication environment. In this thesis, we develop comprehensive adaptive MAC solutions for an IoT-enabled MANET with the consideration of different network characteristics. First, an adaptive MAC solution is proposed for a fully-connected network, supporting homogeneous best-effort data traffic. Based on the detection of current network traffic load condition, nodes can make a switching decision between IEEE 802.11 distributed coordination function (DCF) and dynamic time division multiple access (D-TDMA), when the network traffic load reaches a threshold, referred to as MAC switching point. The adaptive MAC solution determines the MAC switching point in an analytically tractable way to achieve consistently high network performance by adapting to the varying network traffic load. Second, when heterogeneous services are supported in the network, we propose an adaptive hybrid MAC scheme, in which a hybrid superframe structure is designed to accommodate the channel access from delay-sensitive voice traffic using time division multiple access (TDMA) and from best-effort data traffic using truncated carrier sense multiple access with collision avoidance (T-CSMA/CA). According to instantaneous voice and data traffic load conditions, the MAC exploits voice traffic multiplexing to increase the voice capacity by adaptively allocating TDMA time slots to active voice nodes, and maximizes the aggregate data throughput by adjusting the optimal contention window size for each data node. Lastly, we develop a scalable token-based adaptive MAC scheme for a two-hop MANET with an increasing number of nodes. In the network, nodes are partitioned into different one-hop node groups, and a TDMA-based superframe structure is proposed to allocate different TDMA time durations to different node groups to overcome the hidden terminal problem. A probabilistic token passing scheme is adopted for packet transmissions within different node groups, forming different token rings. An average end-to-end delay optimization framework is established to derive the set of optimal MAC parameters for a varying network load condition. With the optimal MAC design, the proposed adaptive MAC scheme achieves consistently minimal average end-to-end delay in an IoT-based two-hop environment with a high network traffic load. This research on adaptive MAC provides some insights in MAC design for performance improvement in different IoT-based network environments with different QoS requirements
    corecore