138 research outputs found

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust

    A collaborative trust management scheme for emergency communication using delay tolerant networks

    Get PDF
    Delay Tolerant Network (DTN) comprises of nodes with small and limited resources including power and memory capacity. We propose the use of DTN as an alternate means of communication for the dissemination of emergency information in a post-disaster evacuation operation. We investigate the performance of DTN in providing emergency communication support services under packet dropping attacks. We consider internally motivated attacks where the nodes that are part of the emergency rescue team are compromised with malicious behaviours thereby dropping packets to disrupt the message dissemination during the evacuation operation. A way to mitigating malicious behaviour and improve network performance of DTN is to use incentives in exchanging information between nodes. Unlike existing schemes, we consider the Basic Watchdog Detection System which detects and acts against misbehaving nodes to reduce their overall impact on the network performance. We design a Collaborative Trust Management Scheme (CTMS) which is based on the Bayesian detection watchdog approach to detect selfish and malicious behaviour in DTN nodes. We have evaluated our proposed CTMS through extensive simulations and compared our results with the other existing schemes. Our evaluations show that the use of adequate collaborative strategies between well behaved nodes could improve the performance of Watchdog schemes taking into account the delivery ratio, routing cost and the message delay from the source node to the destination node

    A collaborative trust management scheme for emergency communication using delay tolerant networks

    Get PDF
    Delay Tolerant Network (DTN) comprises of nodes with small and limited resources including power and memory capacity. We propose the use of DTN as an alternate means of communication for the dissemination of emergency information in a post-disaster evacuation operation. We investigate the performance of DTN in providing emergency communication support services under packet dropping attacks. We consider internally motivated attacks where the nodes that are part of the emergency rescue team are compromised with malicious behaviours thereby dropping packets to disrupt the message dissemination during the evacuation operation. A way to mitigating malicious behaviour and improve network performance of DTN is to use incentives in exchanging information between nodes. Unlike existing schemes, we consider the Basic Watchdog Detection System which detects and acts against misbehaving nodes to reduce their overall impact on the network performance. We design a Collaborative Trust Management Scheme (CTMS) which is based on the Bayesian detection watchdog approach to detect selfish and malicious behaviour in DTN nodes. We have evaluated our proposed CTMS through extensive simulations and compared our results with the other existing schemes. Our evaluations show that the use of adequate collaborative strategies between well behaved nodes could improve the performance of Watchdog schemes taking into account the delivery ratio, routing cost and the message delay from the source node to the destination node

    Performance evaluation of a cooperative reputation system for vehicular delay-tolerant networks

    Get PDF
    In the last decade, both scientific community and automotive industry enabled communications among vehicles in different kinds of scenarios proposing different vehicular architectures. Vehicular delay-tolerant networks (VDTNs) were proposed as a solution to overcome some of the issues found in other vehicular architectures, namely, in dispersed regions and emergency scenarios. Most of these issues arise from the unique characteristics of vehicular networks. Contrary to delay-tolerant networks (DTNs), VDTNs place the bundle layer under the network layer in order to simplify the layered architecture and enable communications in sparse regions characterized by long propagation delays, high error rates, and short contact durations. However, such characteristics turn contacts very important in order to exchange as much information as possible between nodes at every contact opportunity. One way to accomplish this goal is to enforce cooperation between network nodes. To promote cooperation among nodes, it is important that nodes share their own resources to deliver messages from others. This can be a very difficult task, if selfish nodes affect the performance of cooperative nodes. This paper studies the performance of a cooperative reputation system that detects, identify, and avoid communications with selfish nodes. Two scenarios were considered across all the experiments enforcing three different routing protocols (First Contact, Spray and Wait, and GeoSpray). For both scenarios, it was shown that reputation mechanisms that punish aggressively selfish nodes contribute to increase the overall network performance

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    The Impact of Rogue Nodes on the Dependability of Opportunistic Networks

    Get PDF
    Opportunistic Networks (OppNets) are an extension to the classical Mobile Ad hoc Networks (MANETs) where the network is not dependent on any infrastructure (e.g. Access Points or centralized administrative nodes). OppNets can be more flexible than MANETs because an end to end path does not exist and much longer delays can be expected. Whereas a Rogue Access Point is typically immobile in the legacy infrastructure based networks and can have considerable impact on the overall connectivity, the research question in this project evaluates how the pattern and mobility of a rogue nodes impact the dependability and overall "Average Latency" in an Opportunistic Network Environment. We have simulated a subset of the mathematical modeling performed in a previous publication in this regard. Ad hoc networks are very challenging to model due to their mobility and intricate routing schemes. We strategically started our research by exploring the evolution of Opportunistic networks, and then implemented the rogue behavior by utilizing The ONE (Opportunistic Network Environment, by Nokia Research Centre) simulator to carry out our research over rogue behavior. The ONE simulator is an open source simulator developed in Java, simulating the layer 3 of the OSI model. The Rogue behavior is implemented in the simulator to observe the effect of rogue nodes. Finally we extracted the desired dataset to measure the latency by carefully simulating the intended behavior, keeping rest of the parameters (e.g. Node Movement Models, Signal Range and Strength, Point of Interest (POI) etc) unchanged. Our results are encouraging, and coincide with the average latency deterioration patterns as modeled by the previous researchers, with a few exceptions. The practical implementation of plug-in in ONE simulator has shown that only a very high degree of rogue nodes impact the latency, making OppNets more resilient and less vulnerable to malicious attacks
    corecore