408 research outputs found

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions

    Get PDF
    In this paper, we compare the performance of Distributed Coordination Function (DCF) and Enhanced Distributed Channel Access (EDCA) for normal and uniform distributions of mesh clients considering two Wireless Mesh Network (WMN) architectures. As evaluation metrics, we consider throughput, delay, jitter and fairness index metrics. For simulations, we used WMN-GA simulation system, ns-3 and Optimized Link State Routing. The simulation results show that for normal distribution, the throughput of I/B WMN is higher than Hybrid WMN architecture. For uniform distribution, in case of I/B WMN, the throughput of EDCA is a little bit higher than Hybrid WMN. However, for Hybrid WMN, the throughput of DCF is higher than EDCA. For normal distribution, the delay and jitter of Hybrid WMN are lower compared with I/B WMN. For uniform distribution, the delay and jitter of both architectures are almost the same. However, in the case of DCF for 20 flows, the delay and jitter of I/B WMN are lower compared with Hybrid WMN. For I/B architecture, in case of normal distribution the fairness index of DCF is higher than EDCA. However, for Hybrid WMN, the fairness index of EDCA is higher than DCF. For uniform distribution, the fairness index of few flows is higher than others for both WMN architectures.Peer ReviewedPostprint (author's final draft

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using tabu search

    Get PDF
    Copyright @ 2009 IEEE Computer SocietyThis paper proposes a tabu search (TS) based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the tabu search procedure are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed TS multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Coefficient of Restitution based Cross Layer Interference Aware Routing Protocol in Wireless Mesh Networks

    Get PDF
    In Multi-Radio Multi-Channel (MRMC) Wireless Mesh Networks (WMN), Partially Overlapped Channels (POC) has been used to increase the parallel transmission. But adjacent channel interference is very severe in MRMC environment; it decreases the network throughput very badly. In this paper, we propose a Coefficient of Restitution based cross layer interference aware routing protocol (CoRCiaR) to improve TCP performance in Wireless Mesh Networks. This approach comprises of two-steps: Initially, the interference detection algorithm is developed at MAC layer by enhancing the RTS/CTS method. Based on the channel interference, congestion is identified by Round Trip Time (RTT) measurements, and subsequently the route discovery module selects the alternative path to send the data packet. The packets are transmitted to the congestion free path seamlessly by the source. The performance of the proposed CoRCiaR protocol is measured by Coefficient of Restitution (COR) parameter. The impact of the rerouting is experienced on the network throughput performance. The simulation results show that the proposed cross layer interference aware dynamic routing enhances the TCP performance on WMN
    corecore