23,773 research outputs found

    A survey on network simulators in three-dimensional wireless ad hoc and sensor networks

    Get PDF
    © 2016 The Author(s). As steady research in wireless ad hoc and sensor networks is going on, performance evaluation through relevant network simulator becomes indispensable procedure to demonstrate superiority to comparative schemes and suitability in most literatures. Thus, it is very important to establish credibility of simulation results by investigating merits and limitations of each simulator prior to selection. Based on this motivation, in this article, we present a comprehensive survey on current network simulators for new emerging research area, three-dimensional wireless ad hoc and sensor networks which is represented by airborne ad hoc networks and underwater sensor networks by reviewing major existing simulators as well as presenting their main features in several aspects. In addition, we address the outstanding mobility models which are main components in simulation study for self-organizing ad hoc networks. Finally, open research issues and research challenges are discussed and presented

    Dual-Region Reputation based Resource Management in Mobile Ad hoc Networks

    Get PDF
    A mobile ad hoc network MANET is a kind of wireless ad hoc network It is a selfconfiguring network of mobile routers connected by wireless links Since MANETs do not have a fixed infrastructure it is a challenge to manage both mobility as well as resource utilizations for Ad hoc networks In this paper I propose a Reputation management scheme called reputation factor RF effective resource selection using the reputation based approaches for node selection The developed resource allocation algorithm is based on different parameters like time cost number of processor request etc The developed priority algorithm is used for a better resource allocation of jobs in the network environment used for the simulation of different models or jobs in an efficient way After the efficient resource allocation of various jobs an evaluation is being carried out which illustrates the better performance Performance is evaluated by using simulatio

    Epcast: Controlled Dissemination in Human-based Wireless Networks by means of Epidemic Spreading Models

    Full text link
    Epidemics-inspired techniques have received huge attention in recent years from the distributed systems and networking communities. These algorithms and protocols rely on probabilistic message replication and redundancy to ensure reliable communication. Moreover, they have been successfully exploited to support group communication in distributed systems, broadcasting, multicasting and information dissemination in fixed and mobile networks. However, in most of the existing work, the probability of infection is determined heuristically, without relying on any analytical model. This often leads to unnecessarily high transmission overheads. In this paper we show that models of epidemic spreading in complex networks can be applied to the problem of tuning and controlling the dissemination of information in wireless ad hoc networks composed of devices carried by individuals, i.e., human-based networks. The novelty of our idea resides in the evaluation and exploitation of the structure of the underlying human network for the automatic tuning of the dissemination process in order to improve the protocol performance. We evaluate the results using synthetic mobility models and real human contacts traces

    Mobility Models for Vehicular Communications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-15497-8_11The experimental evaluation of vehicular ad hoc networks (VANETs) implies elevate economic cost and organizational complexity, especially in presence of solutions that target large-scale deployments. As performance evaluation is however mandatory prior to the actual implementation of VANETs, simulation has established as the de-facto standard for the analysis of dedicated network protocols and architectures. The vehicular environment makes network simulation particularly challenging, as it requires the faithful modelling not only of the network stack, but also of all phenomena linked to road traffic dynamics and radio-frequency signal propagation in highly mobile environments. In this chapter, we will focus on the first aspect, and discuss the representation of mobility in VANET simulations. Specifically, we will present the requirements of a dependable simulation, and introduce models of the road infrastructure, of the driver’s behaviour, and of the traffic dynamics. We will also outline the evolution of simulation tools implementing such models, and provide a hands-on example of reliable vehicular mobility modelling for VANET simulation.Manzoni, P.; Fiore, M.; Uppoor, S.; Martínez Domínguez, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC. (2015). Mobility Models for Vehicular Communications. En Vehicular ad hoc Networks. Standards, Solutions, and Research. Springer. 309-333. doi:10.1007/978-3-319-15497-8_11S309333Bai F, Sadagopan N, Helmy A (2003) The IMPORTANT framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Elsevier Ad Hoc Netw1:383–403Baumann R, Legendre F, Sommer P (2008) Generic mobility simulation framework (GMSF). In: ACM mobility modelsBononi L, Di Felice M, D’Angelo G, Bracuto M, Donatiello L (2008) MoVES: A framework for parallel and distributed simulation of wireless vehicular ad hoc networks. Comput Netw 52(1):155–179Cabspotting Project (2006) San Francisco exploratorium’s invisible dynamics initiative. http://cabspotting.org/index.htmlCamp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mobile Comput 2(5):483–502. Special issue on Mobile Ad Hoc Networking: Research, Trends and ApplicationsCavin D, Sasson Y, Schiper A (2002) On the accuracy of MANET simulators. In: Proceedings of the second ACM international workshop on principles of mobile computing. ACM, New York, pp 38–43Choffnes D, Bustamante F (2005) An integrated mobility and traffic model for vehicular wireless networks. In: ACM VANETDavies V (2000) Evaluating mobility models within an ad hoc network. Master’s thesis, Colorado School of Mines, Boulder, Etats-UnisEhling M, Bihler W (1996) Zeit im Blickfeld. Ergebnisse einer repräsentativen Zeitbudgeterhebung. In: Blanke K, Ehling M, Schwarz N (eds) Schriftenreihe des Bundesministeriums für Familie, Senioren, Frauen und Jugend, vol 121. W. Kohlhammer, Stuttgart, pp 237–274ETH Laboratory for Software Technology (2009) K. Nagel. http://www.lst.inf.ethz.ch/research/ad-hoc/car-traces/Fiore M, Härri J (2008) The networking shape of vehicular mobility. In: ACM MobiHoc, Hong Kong, ChinaFiore M, Haerri J, Filali F, Bonnet C (2007) Vehicular mobility simulation for VANETS. In: Proceedings of the 40th annual simulation symposium (ANSS 2007), Norfolk, VAFleetnet Project - Internet on the Road (2000) NEC Laboratories Europe. http://www.neclab.eu/Projects/fleetnet.htmGawron C (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int J Mod Phys C 9(3):393–407Haerri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11(4):19–41. doi: 10.1109/SURV.2009.090403 . http://dx.doi.org/10.1109/SURV.2009.090403Härri J, Fiore M, Filali F, Bonnet C (2011) Vehicular mobility simulation with VanetMobiSim. Simulation 87(4):275–300. doi: 10.1177/0037549709345997 . http://dx.doi.org/10.1177/0037549709345997Hertkorn G, Wagner P (2004) The application of microscopic activity based travel demand modelling in large scale simulations. In: World conference on transport researchHuang E, Hu W, Crowcroft J, Wassell I (2005) Towards commercial mobile ad hoc network applications: a radio dispatch system. In: Sixth ACM international symposium on mobile ad hoc networking and computing (MobiHoc 2005), Urbana-Champaign, ILJaap S, Bechler M, Wolf L (2005) Evaluation of routing protocols for vehicular ad hoc networks in city traffic scenarios. In: ITSTJardosh A, Belding-Royer E, Almeroth K, Suri S (2003) Towards realistic mobility models for mobile ad hoc networks. In: ACM/IEEE international conference on mobile computing and networking (MobiCom 2003), San Diego, CAKim J, Sridhara V, Bohacek S (2009) Realistic mobility simulation of urban mesh networks. Ad Hoc Netw 7(2):411–430Krajzewicz D (2009) Kombination von taktischen und strategischen Einflüssen in einer mikroskopischen Verkehrsflusssimulation. In: Jürgensohn T, Kolrep H (eds) Fahrermodellierung in Wissenschaft und Wirtschaft. VDI-Verlag, Düsseldorf, pp 104–115Krajzewicz D, Blokpoel RJ, Cartolano F, Cataldi P, Gonzalez A, Lazaro O, Leguay J, Lin L, Maneros J, Rondinone M (2010) iTETRIS - a system for the evaluation of cooperative traffic management solutions. In: Advanced microsystems for automotive applications 2010, VDI-Buch. Springer, Berlin, pp 399–410Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO—simulation of urban mobility. Int J Adv Syst Measur 5(3/4):128–138Krauss S (1998) Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis, Universität zu KölnKrauss S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow. Phys Rev E 55(304):55–97Legendre F, Borrel V, Dias de Amorim M, Fdida S (2006) Reconsidering microscopic mobility modeling for self-organizing networks. Network IEEE 20(6):4–12. doi: 10.1109/MNET.2006.273114Mangharam R, Weller D, Rajkumar R, Mudalige P (2006) GrooveNet: a hybrid simulator for vehicle-to-vehicle networks. In: IEEE MobiquitousMartinez FJ, Cano JC, Calafate CT, Manzoni P (2008) Citymob: a mobility model pattern generator for VANETs. In: IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), BeijingMiller J, Horowitz E (2007) FreeSim: a free real-time freeway traffic simulator. In: IEEE ITSCNagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229Nagel K, Wolf D, Wagner P, Simon P (1998) Two-lane traffic rules for cellular automata: a systematic approach. Phys Rev E 58:1425–1437NOW - Network on Wheels Project (2008) Hartenstein H, Härri J, Torrent-Moreno M. https://dsn.tm.kit.edu/english/projects_now-project.phpPiorkowski M, Raya M, Lugo A, Papadimitratos P, Grossglauser M, Hubaux JP (2008) TraNS: realistic joint traffic and network simulator for VANETs. ACM Mobile Comput Commun Rev 12(1):31–33Rindsfüser G, Ansorge J, Mühlhans H (2002) Aktivitätenvorhaben. In: Beckmann K (ed) SimVV Mobilität verstehen und lenken—zu einer integrierten quantitativen Gesamtsicht und Mikrosimulation von Verkehr, Ministry of School, Science and Research of Nordrhein-WestfalenSaha A, Johnson D (2004) Modeling mobility for vehicular ad hoc networks. In: ACM VANETSeskar I, Maric S, Holtzman J, Wasserman J (1992) Rate of location area updates in cellular systems. In: IEEE 42nd vehicular technology conference, 1992, vol 2, pp 694–697. doi: 10.1109/VETEC.1992.245478Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Trans Mobile Comput 10(1):3–15Tian J, Haehner J, Becker C, Stepanov I, Rothermel K (2002) Graph-based mobility model for mobile ad hoc network simulation. In: SCS ANSS, San DiegoTreiber M, Helbing D (2002) Realistische mikrosimulation von strassenverkehr mit einem einfachen modell. In: ASIM, Rostock, AllemagneTreiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824UDel Models for Simulation of Urban Mobile Wireless Networks (2009) Stephan Bohacek. http://www.udelmodels.eecis.udel.eduUMass DieselNet Project (2009) UMass diverse outdoor mobile environment (DOME). https://dome.cs.umass.edu/umassdieselnetUppoor S, Trullols-Cruces O, Fiore M, Barcelo-Ordinas JM (2015) Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans Mobile Comput 1:1. PrePrints. doi: 10.1109/TMC.2013.27Varschen C, Wagner P (2006) Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis von Zeitverwendungstagebuchern. Stadt Region Land 81:63–69Yoon J, Liu M, Noble B (2003) Random waypoint considered harmful. In: Proceedings of IEEE INFOCOMM 2003, San Francisco, CAZheng Q, Hong X, Liu J (2006) An agenda-based mobility model. In: 39th IEEE annual simulation symposium (ANSS-39-2006), Huntsville, A

    Classification and Comparative Study of Routing Techniques in Adhoc Wireless Networks

    Get PDF
    Wireless systems have been in use since 1980s. We have seen their evolutions to first, second and third generation's wireless systems. Wireless systems operate with the aid of a centralized supporting structure such as an access point. These access points assist the wireless users to keep connected with the wireless system, when they roam from one place to the other. The presence of a fixed supporting structure limits the adaptability of wireless systems. In other words, the technology cannot work effectively in places where there is no fixed infrastructure. Future generation wireless systems will require easy and quick deployment of wireless networks. This quick network deployment is not possible with the Infrastructured wireless systems. Recent advancements such as Bluetooth introduced a new type of wireless systems known as ad-hoc networks. Ad-hoc networks or "short live" networks operate in the absence of fixed infrastructure. They offer quick and easy network deployment in situations where it is not possible otherwise. Ad-hoc is a Latin word, which means "for this or for this only." Mobile ad-hoc network is an autonomous system of mobile nodes connected by wireless links; each node operates as an end system and a router for all other nodes in the network. Nodes in ad-hoc network are free to move and organize themselves in an arbitrary fashion. Each user is free to roam about while communication with others. The path between each pair of the users may have multiple links and the radio between them can be heterogeneous. This allows an association of various links to be a part of the same network. A mobile ad-hoc network is a collection of mobile nodes forming an ad-hoc network without the assistance of any centralized structures. These networks introduced a new art of network establishment and can be well suited for an environment where either the infrastructure is lost or where deploy an infrastructure is not very cost effective. The popular IEEE 802.11 "WI-FI" protocol is capable of providing ad-hoc network facilities at low level, when no access point is available. However in this case, the nodes are limited to send and receive information but do not route anything across the network. Ad-hoc networks can operate in a standalone fashion or could possibly be connected to a larger network such as the Internet. An ad-hoc network has certain characteristics, which imposes new demands on the routing protocol. The most important characteristic is the dynamic topology, which is a consequence of node mobility. Nodes can change position quite frequently; the nodes in an ad-hoc network can consist of laptops and personal digital assistants and are often very limited in resources such as CPU power, storage capacity, battery power and bandwidth. This means that the routing protocol should try to minimize control traffic, such as periodic update messages. The Internet Engineering Task Force currently has a working group named Mobile Ad-hoc Networks that is working on routing specifications for ad-hoc networks. This M.Phill thesis evaluates some of the protocols put forth by the working group. This evaluation is done by means of simulation using Network simulator 2 from Berkeley. This work aims at classification of the existing routing protocols of adhoc wireless networks using some definite parameters. After classification of routing protocols of adhoc wireless network, their comparative study was undertaken in order to yield category wise distribution. Furthermore performance evaluation of these protocols was carried out by employing different parameters like fading models, mobility models, traffic patterns etc using the network simulator NS-2 Hence I explore and evaluate different methods for validation of ad hoc routing protocols which are used to set up forwarding paths in spontaneous networks of mobile/Adhoc devices to accomplish the above mentioned comparative study and classification

    Time Dependent Performance Analysis of Wireless Networks

    Get PDF
    Many wireless networks are subject to frequent changes in a combination of network topology, traffic demand, and link capacity, such that nonstationary/transient conditions always exist in packet-level network behavior. Although there are extensive studies on the steady-state performance of wireless networks, little work exists on the systematic study of their packet-level time varying behavior. However, it is increasingly noted that wireless networks must not only perform well in steady state, but must also have acceptable performance under nonstationary/transient conditions. Furthermore, numerous applications in today's wireless networks are very critical to the real-time performance of delay, packet delivery ratio, etc, such as safety applications in vehicular networks and military applications in mobile ad hoc networks. Thus, there exists a need for techniques to analyze the time dependent performance of wireless networks. In this dissertation, we develop a performance modeling framework incorporating queuing and stochastic modeling techniques to efficiently evaluate packet-level time dependent performance of vehicular networks (single-hop) and mobile ad hoc networks (multi-hop). For vehicular networks, we consider the dynamic behavior of IEEE 802.11p MAC protocol due to node mobility and model the network hearability as a time varying adjacency matrix. For mobile ad hoc networks, we focus on the dynamic behavior of network layer performance due to rerouting and model the network connectivity as a time varying adjacency matrix. In both types of networks, node queues are modeled by the same fluid flow technique, which follows flow conservation principle to construct differential equations from a pointwise mapping of the steady-state queueing relationships. Numerical results confirm that fluid-flow based performance models are able to respond to the ongoing nonstationary/transient conditions of wireless networks promptly and accurately. Moreover, compared to the computation time of standard discrete event simulator, fluid-flow based model is shown to be a more scalable evaluation tool. In general, our proposed performance model can be used to explore network design alternatives or to get a quick estimate on the performance variation in response to some dynamic changes in network conditions

    Determining the representative factors affecting warning message dissemination in VANETs

    Full text link
    In this paper, we present a statistical analysis based on the 2k factorial methodology to determine the representative factors affecting traffic safety applications in Vehicular ad hoc networks (VANETs). Our purpose is to determine what are the key factors affecting Warning Message Dissemination (WMD) in order to concentrate on such parameters, thus reducing the amount of required simulation time when evaluating VANETs. Simulation results show that the key factors affecting warning messages delivery are: (i) the transmission range, (ii) the radio propagation model used, and (iii) the density of vehicles. Based on this statistical analysis, we evaluate a compound key factor: neighbor density. This factor combines the above-mentioned factors into a single entity, reducing the number of factors that must be taken into account for VANET researchers to evaluate the benefits of their proposals.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2008-06441-C02-01, and by the Fundacion Antonio Gargallo, under Grant 2009/B001.Martínez Domínguez, FJ.; Toh, CK.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2012). Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications. 67(2):295-314. https://doi.org/10.1007/s11277-010-9989-4S295314672Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the vehicular technology conference (VTC-2007 Fall), USA.Fall, K., & Varadhan, K. (2000). ns notes and documents. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC. Available at http://www.isi.edu/nsnam/ns/ns-documentation.html .Fasolo, E., Zanella, A., & Zorzi, M. (2006). An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In Proceedings of the IEEE International Conference on Communications, Istambul, Turkey.Korkmaz, G., Ekici, E., Ozguner, F., & Ozguner, U. (2004). Urban multi-hop broadcast protocols for inter-vehicle communication systems. In Proceedings of First ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004).Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). Realistic radio propagation models (RPMs) for VANET simulations. In IEEE wireless communications and networking conference (WCNC), Budapest, Hungary.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2008). CityMob: A mobility model pattern generator for VANETs. In IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), Beijing, China.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). A performance evaluation of warning message dissemination in 802.11p based VANETs. In IEEE local computer networks conference (LCN 2009), Zürich, Switzerland.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2005). Fair sharing of bandwidth in VANETs. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany.Tseng Y.-C., Ni S.-Y., Chen Y.-S., Sheu J.-P. (2002) The broadcast storm problem in a mobile ad hoc network. Wireless Networks 8: 153–167Wisitpongphan N., Tonguz O., Parikh J., Mudalige P., Bai F., Sadekar V. (2007) Broadcast storm mitigation techniques in vehicular ad hoc networks. Wireless Communications IEEE 14(6): 84–94. doi: 10.1109/MWC.2007.4407231Yang, X., Liu, J., Zhao, F., & Vaidya, N. H. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the first annual international conference on mobile and ubiquitous systems: Networking and services (MobiQuitous’04).Yoon, J., Liu, M., & Noble, B. (2003). Random waypoint considered harmful. Proceedings of IEEE INFOCOMM 2003, San Francisco, California, USA.Zang, Y., Stibor, L., Cheng, X., Reumerman, H.-J., Paruzel, A., & Barroso, A. (2007). Congestion control in wireless networks for vehicular safety applications. In Proceedings of the 8th European Wireless Conference, Paris, France

    Performance evaluation of an efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model

    Get PDF
    Flooding is the simplest and commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision in the network, a phenomenon referred to as broadcast storm problem. Several probabilistic broadcast schemes have been proposed to mitigate this problem inherent with flooding. Recently, we have proposed a hybrid-based scheme as one of the probabilistic scheme, which combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Despite these considerable numbers of proposed broadcast schemes, majority of these schemes’ performance evaluation was based on random waypoint model. In this paper, we evaluate the performance of our broadcast scheme using a community based mobility model which is based on social network theory and compare it against widely used random waypoint mobility model. Simulation results have shown that using unrealistic movement pattern does not truly reflect on the actual performance of the scheme in terms of saved-rebroadcast, reachability and end to end delay
    • …
    corecore