3,372 research outputs found

    Interference Alignment (IA) and Coordinated Multi-Point (CoMP) with IEEE802.11ac feedback compression: testbed results

    Full text link
    We have implemented interference alignment (IA) and joint transmission coordinated multipoint (CoMP) on a wireless testbed using the feedback compression scheme of the new 802.11ac standard. The performance as a function of the frequency domain granularity is assessed. Realistic throughput gains are obtained by probing each spatial modulation stream with ten different coding and modulation schemes. The gain of IA and CoMP over TDMA MIMO is found to be 26% and 71%, respectively under stationary conditions. In our dense indoor office deployment, the frequency domain granularity of the feedback can be reduced down to every 8th subcarrier (2.5MHz), without sacrificing performance.Comment: To appear in ICASSP 201

    Dual-Polarized Ricean MIMO Channels: Modeling and Performance Assessment

    Full text link
    In wireless communication systems, dual-polarized (DP) instead of single-polarized (SP) multiple-input multiple-output (MIMO) transmission is used to improve the spectral efficiency under certain conditions on the channel and the signal-to-noise ratio (SNR). In order to identify these conditions, we first propose a novel channel model for DP mobile Ricean MIMO channels for which statistical channel parameters are readily obtained from a moment-based channel decomposition. Second, we derive an approximation of the mutual information (MI), which can be expressed as a function of those statistical channel parameters. Based on this approximation, we characterize the required SNR for a DP MIMO system to outperform an SP MIMO system in terms of the MI. Finally, we apply our results to channel measurements at 2.53 GHz. We find that, using the proposed channel decomposition and the approximation of the MI, we are able to reproduce the (practically relevant) SNR values above which DP MIMO systems outperform SP MIMO systems.Comment: submitted to the IEEE Transactions on Communication

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201
    • …
    corecore