4 research outputs found

    Weighted Round Robin (WRR) Based Replenishment Model in Vendor Managed Inventory (VMI) System

    Get PDF
    Vendor managed inventory (VMI) is a popular supply chain system where vendor or supplier take responsibility and decision in managing its customers’ inventory. Two important goals of the VMI are improving service level and maintaining inventory still low and available. Many studies in VMI compare their performance with the traditional system. Unfortunately, studies in improving VMI performance are rare. This work aims to improve VMI by implementing Weighted Round Robin (WRR), a popular scheduling model in computer system, in the replenishment model in VMI. WRR is popular because of its load balancing nature. Environment in this work is two-echelon supply chain. The vendor is a multi-product manufacturer. The customers are retailers. This WRR based replenishment model is then compared with two common replenishment models: (s, S) model and (r, Q) model. In this work, we observe two performance parameters: sales and inventory condition. Based on the simulation result, it is shown that the WRR model performs better than the existing (s, S) model and (r, Q) model and it occurs in most of the observed variables. In the certain condition, performance of the WRR model compared with the (s, S) model and the (r, Q) model is as follows. The WRR model performs 31 percent better than the (s, S) model and 12 percent better than the (r, Q) model in success ratio. Manufacturer’s stock in the WRR model is only 36 percent than in the (s, S) model and 40 percent than in the (r, Q) model. Total stock in the supply chain in the WRR model is only 63 percent than in the (s, S) model and 89 percent than in the (r, Q) model

    Weighted Round Robin (WRR) Based Replenishment Model in Vendor Managed Inventory (VMI) System

    Get PDF
    Vendor managed inventory (VMI) is a popular supply chain system where vendor or supplier take responsibility and decision in managing its customers’ inventory. Two important goals of the VMI are improving service level and maintaining inventory still low and available. Many studies in VMI compare their performance with the traditional system. Unfortunately, studies in improving VMI performance are rare. This work aims to improve VMI by implementing Weighted Round Robin (WRR), a popular scheduling model in computer system, in the replenishment model in VMI. WRR is popular because of its load balancing nature. Environment in this work is two-echelon supply chain. The vendor is a multi-product manufacturer. The customers are retailers. This WRR based replenishment model is then compared with two common replenishment models: (s, S) model and (r, Q) model. In this work, we observe two performance parameters: sales and inventory condition. Based on the simulation result, it is shown that the WRR model performs better than the existing (s, S) model and (r, Q) model and it occurs in most of the observed variables. In the certain condition, performance of the WRR model compared with the (s, S) model and the (r, Q) model is as follows. The WRR model performs 31 percent better than the (s, S) model and 12 percent better than the (r, Q) model in success ratio. Manufacturer’s stock in the WRR model is only 36 percent than in the (s, S) model and 40 percent than in the (r, Q) model. Total stock in the supply chain in the WRR model is only 63 percent than in the (s, S) model and 89 percent than in the (r, Q) model

    An improved resource allocation scheme for WiMAX using channel information

    Get PDF
    In recent years, tremendous progress has been made in wireless communication systems to provide wireless coverage to end users at different data rates. WiMAX technology provides wireless broadband access over an extended coverage area in both fixed and mobility environments. Most of the existing resource allocation schemes allocate resources based on respective service class of the incoming users’ requests. However, due to variation in channel conditions, user mobility and diverse resource requirements QoS based resource allocation either results in over or under utilization of allocated resources. Therefore, resource allocation is a challenging task in WiMAX. This research proposes an improved resource management mechanism that performs resource allocation by taking into consideration not only the user service class but also the respective channel status. Based on these two parameters, this research aims to achieve improved resource allocation in terms of resource utilization, fairness and network throughput. First, a Channel Based Resource Allocation scheme is introduced where priority in resource allocation is given to users’ requests with relatively higher service classes and better channel status. To maintain fairness in resource allocation process, a Fair Resource Allocation Based Service mechanism is developed where priority is given to users’ requests having less additional resources demand. Finally, to improve throughput of the network, a Channel Based Throughput Improvement approach is proposed which dynamically selects a threshold level of channel gain based on individual channel gain of users. During resource allocation process, users above the threshold level are selected for resource allocation such that priority is given to users with high channel gain. Different simulation scenario results reveal an overall improved resource utilization from 87% to 91% and the throughput improves up to 15% when compared to existing schemes. In conclusion the performance of resource utilization is improved if channel status is considered as an input parameter
    corecore