680 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Subspace Methods for Joint Sparse Recovery

    Full text link
    We propose robust and efficient algorithms for the joint sparse recovery problem in compressed sensing, which simultaneously recover the supports of jointly sparse signals from their multiple measurement vectors obtained through a common sensing matrix. In a favorable situation, the unknown matrix, which consists of the jointly sparse signals, has linearly independent nonzero rows. In this case, the MUSIC (MUltiple SIgnal Classification) algorithm, originally proposed by Schmidt for the direction of arrival problem in sensor array processing and later proposed and analyzed for joint sparse recovery by Feng and Bresler, provides a guarantee with the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank-defect or ill-conditioning. This situation arises with limited number of measurement vectors, or with highly correlated signal components. In this case MUSIC fails, and in practice none of the existing methods can consistently approach the fundamental limit. We propose subspace-augmented MUSIC (SA-MUSIC), which improves on MUSIC so that the support is reliably recovered under such unfavorable conditions. Combined with subspace-based greedy algorithms also proposed and analyzed in this paper, SA-MUSIC provides a computationally efficient algorithm with a performance guarantee. The performance guarantees are given in terms of a version of restricted isometry property. In particular, we also present a non-asymptotic perturbation analysis of the signal subspace estimation that has been missing in the previous study of MUSIC.Comment: submitted to IEEE transactions on Information Theory, revised versio
    • …
    corecore