62 research outputs found

    SCOPED: Seismic COmputational Platform for Empowering Discovery [Year 2]

    Get PDF
    This poster was presented at the NSF CSSI annual PI meeting in Houston, September 26-27, 2023. This summarizes the Year 2 efforts of the SCOPED project.The NSF funding awards are OAC-CSSI 2104052 [UAF/Tape], OAC-CSSI 2103621 [MINES/Bozdag], OAC-CSSI 2103701 [UW/Denolle], OAC-CSSI 2103741 [Columbia/Waldhauser], OAC-CSSI 2103494 [TACC/Wang]

    Function-as-a-Service Performance Evaluation: A Multivocal Literature Review

    Get PDF
    Function-as-a-Service (FaaS) is one form of the serverless cloud computing paradigm and is defined through FaaS platforms (e.g., AWS Lambda) executing event-triggered code snippets (i.e., functions). Many studies that empirically evaluate the performance of such FaaS platforms have started to appear but we are currently lacking a comprehensive understanding of the overall domain. To address this gap, we conducted a multivocal literature review (MLR) covering 112 studies from academic (51) and grey (61) literature. We find that existing work mainly studies the AWS Lambda platform and focuses on micro-benchmarks using simple functions to measure CPU speed and FaaS platform overhead (i.e., container cold starts). Further, we discover a mismatch between academic and industrial sources on tested platform configurations, find that function triggers remain insufficiently studied, and identify HTTP API gateways and cloud storages as the most used external service integrations. Following existing guidelines on experimentation in cloud systems, we discover many flaws threatening the reproducibility of experiments presented in the surveyed studies. We conclude with a discussion of gaps in literature and highlight methodological suggestions that may serve to improve future FaaS performance evaluation studies.Comment: improvements including postprint update

    SoC-Cluster as an Edge Server: an Application-driven Measurement Study

    Full text link
    Huge electricity consumption is a severe issue for edge data centers. To this end, we propose a new form of edge server, namely SoC-Cluster, that orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC-Cluster server that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server has been commercialized successfully and deployed in large scale on edge clouds. The current dominant workload on those deployed SoC-Clusters is cloud gaming, as mobile SoCs can seamlessly run native mobile games. The primary goal of this work is to demystify whether SoC-Cluster can efficiently serve more general-purpose, edge-typical workloads. Therefore, we built a benchmark suite that leverages state-of-the-art libraries for two killer edge workloads, i.e., video transcoding and deep learning inference. The benchmark comprehensively reports the performance, power consumption, and other application-specific metrics. We then performed a thorough measurement study and directly compared SoC-Cluster with traditional edge servers (with Intel CPU and NVIDIA GPU) with respect to physical size, electricity, and billing. The results reveal the advantages of SoC-Cluster, especially its high energy efficiency and the ability to proportionally scale energy consumption with various incoming loads, as well as its limitations. The results also provide insightful implications and valuable guidance to further improve SoC-Cluster and land it in broader edge scenarios

    Adaptive Asynchronous Control and Consistency in Distributed Data Exploration Systems

    Get PDF
    Advances in machine learning and streaming systems provide a backbone to transform vast arrays of raw data into valuable information. Leveraging distributed execution, analysis engines can process this information effectively within an iterative data exploration workflow to solve problems at unprecedented rates. However, with increased input dimensionality, a desire to simultaneously share and isolate information, as well as overlapping and dependent tasks, this process is becoming increasingly difficult to maintain. User interaction derails exploratory progress due to manual oversight on lower level tasks such as tuning parameters, adjusting filters, and monitoring queries. We identify human-in-the-loop management of data generation and distributed analysis as an inhibiting problem precluding efficient online, iterative data exploration which causes delays in knowledge discovery and decision making. The flexible and scalable systems implementing the exploration workflow require semi-autonomous methods integrated as architectural support to reduce human involvement. We, thus, argue that an abstraction layer providing adaptive asynchronous control and consistency management over a series of individual tasks coordinated to achieve a global objective can significantly improve data exploration effectiveness and efficiency. This thesis introduces methodologies which autonomously coordinate distributed execution at a lower level in order to synchronize multiple efforts as part of a common goal. We demonstrate the impact on data exploration through serverless simulation ensemble management and multi-model machine learning by showing improved performance and reduced resource utilization enabling a more productive semi-autonomous exploration workflow. We focus on the specific genres of molecular dynamics and personalized healthcare, however, the contributions are applicable to a wide variety of domains

    Performance Evaluation of Serverless Applications and Infrastructures

    Get PDF
    Context. Cloud computing has become the de facto standard for deploying modern web-based software systems, which makes its performance crucial to the efficient functioning of many applications. However, the unabated growth of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of new serverless services, such as Function-as-a-Service (FaaS), has led to an unprecedented diversity of cloud services with different performance characteristics. Measuring these characteristics is difficult in dynamic cloud environments due to performance variability in large-scale distributed systems with limited observability.Objective. This thesis aims to enable reproducible performance evaluation of serverless applications and their underlying cloud infrastructure.Method. A combination of literature review and empirical research established a consolidated view on serverless applications and their performance. New solutions were developed through engineering research and used to conduct performance benchmarking field experiments in cloud environments.Findings. The review of 112 FaaS performance studies from academic and industrial sources found a strong focus on a single cloud platform using artificial micro-benchmarks and discovered that most studies do not follow reproducibility principles on cloud experimentation. Characterizing 89 serverless applications revealed that they are most commonly used for short-running tasks with low data volume and bursty workloads. A novel trace-based serverless application benchmark shows that external service calls often dominate the median end-to-end latency and cause long tail latency. The latency breakdown analysis further identifies performance challenges of serverless applications, such as long delays through asynchronous function triggers, substantial runtime initialization for coldstarts, increased performance variability under bursty workloads, and heavily provider-dependent performance characteristics. The evaluation of different cloud benchmarking methodologies has shown that only selected micro-benchmarks are suitable for estimating application performance, performance variability depends on the resource type, and batch testing on the same instance with repetitions should be used for reliable performance testing.Conclusions. The insights of this thesis can guide practitioners in building performance-optimized serverless applications and researchers in reproducibly evaluating cloud performance using suitable execution methodologies and different benchmark types
    • …
    corecore