3,579 research outputs found

    Cram\'er-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models

    Full text link
    This paper presents Cram\'er-Rao Lower Bound (CRLB) for the complex-valued Blind Source Extraction (BSE) problem based on the assumption that the target signal is independent of the other signals. Two instantaneous mixing models are considered. First, we consider the standard determined mixing model used in Independent Component Analysis (ICA) where the mixing matrix is square and non-singular and the number of the latent sources is the same as that of the observed signals. The CRLB for Independent Component Extraction (ICE) where the mixing matrix is re-parameterized in order to extract only one independent target source is computed. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and bring new results for the complex domain. Also, the CRLB for ICE is shown to coincide with that for ICA when the non-Gaussianity of background is taken into account. %unless the assumed sources' distributions are misspecified. Second, we extend the CRLB analysis to piecewise determined mixing models. Here, the observed signals are assumed to obey the determined mixing model within short blocks where the mixing matrices can be varying from block to block. However, either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks. The CRLBs for the parameters of these models bring new performance bounds for the BSE problem.Comment: 25 pages, 8 figure

    Adaptive signal processing algorithms for noncircular complex data

    No full text
    The complex domain provides a natural processing framework for a large class of signals encountered in communications, radar, biomedical engineering and renewable energy. Statistical signal processing in C has traditionally been viewed as a straightforward extension of the corresponding algorithms in the real domain R, however, recent developments in augmented complex statistics show that, in general, this leads to under-modelling. This direct treatment of complex-valued signals has led to advances in so called widely linear modelling and the introduction of a generalised framework for the differentiability of both analytic and non-analytic complex and quaternion functions. In this thesis, supervised and blind complex adaptive algorithms capable of processing the generality of complex and quaternion signals (both circular and noncircular) in both noise-free and noisy environments are developed; their usefulness in real-world applications is demonstrated through case studies. The focus of this thesis is on the use of augmented statistics and widely linear modelling. The standard complex least mean square (CLMS) algorithm is extended to perform optimally for the generality of complex-valued signals, and is shown to outperform the CLMS algorithm. Next, extraction of latent complex-valued signals from large mixtures is addressed. This is achieved by developing several classes of complex blind source extraction algorithms based on fundamental signal properties such as smoothness, predictability and degree of Gaussianity, with the analysis of the existence and uniqueness of the solutions also provided. These algorithms are shown to facilitate real-time applications, such as those in brain computer interfacing (BCI). Due to their modified cost functions and the widely linear mixing model, this class of algorithms perform well in both noise-free and noisy environments. Next, based on a widely linear quaternion model, the FastICA algorithm is extended to the quaternion domain to provide separation of the generality of quaternion signals. The enhanced performances of the widely linear algorithms are illustrated in renewable energy and biomedical applications, in particular, for the prediction of wind profiles and extraction of artifacts from EEG recordings
    corecore