69,807 research outputs found

    Scaling Monte Carlo Tree Search on Intel Xeon Phi

    Full text link
    Many algorithms have been parallelized successfully on the Intel Xeon Phi coprocessor, especially those with regular, balanced, and predictable data access patterns and instruction flows. Irregular and unbalanced algorithms are harder to parallelize efficiently. They are, for instance, present in artificial intelligence search algorithms such as Monte Carlo Tree Search (MCTS). In this paper we study the scaling behavior of MCTS, on a highly optimized real-world application, on real hardware. The Intel Xeon Phi allows shared memory scaling studies up to 61 cores and 244 hardware threads. We compare work-stealing (Cilk Plus and TBB) and work-sharing (FIFO scheduling) approaches. Interestingly, we find that a straightforward thread pool with a work-sharing FIFO queue shows the best performance. A crucial element for this high performance is the controlling of the grain size, an approach that we call Grain Size Controlled Parallel MCTS. Our subsequent comparing with the Xeon CPUs shows an even more comprehensible distinction in performance between different threading libraries. We achieve, to the best of our knowledge, the fastest implementation of a parallel MCTS on the 61 core Intel Xeon Phi using a real application (47 relative to a sequential run).Comment: 8 pages, 9 figure

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Behavior Trees in Robotics and AI: An Introduction

    Full text link
    A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applications, which has led to the spread of BT from computer game programming to many branches of AI and Robotics. In this book, we will first give an introduction to BTs, then we describe how BTs relate to, and in many cases generalize, earlier switching structures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. Properties such as safety, robustness, and efficiency are important for an autonomous system, and we describe a set of tools for formally analyzing these using a state space description of BTs. With the new analysis tools, we can formalize the descriptions of how BTs generalize earlier approaches. We also show the use of BTs in automated planning and machine learning. Finally, we describe an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion

    Adaptive dynamic path re-planning RRT algorithms with game theory for UAVs

    Get PDF
    The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots

    Monte Carlo Approaches to Parameterized Poker Squares

    Full text link
    The paper summarized a variety of Monte Carlo approaches employed in the top three performing entries to the Parameterized Poker Squares NSG Challenge competition. In all cases AI players benefited from real-time machine learning and various Monte Carlo game-tree search techniques
    • …
    corecore