235 research outputs found

    Seamless coverage for the next generation wireless communication networks

    Get PDF
    Data demand has exponentially increased due to the rapid growth of wireless and mobile devices traffic in recent years. With the advent of the fifth generation, 5G, and beyond networks, users will be able to take advantage of additional services beyond the capability of current wireless networks while maintaining a highquality experience. The exploitation of millimeter-wave (mm-wave) frequency in 5G promises to meet the demands of future networks with the motto of providing high data rate coverage with low latency to its users, which will allow future networks to function more efficiently. However, while planning a network using mm-wave frequencies, it is important to consider their small coverage footprints and weak penetration resistance. Heterogeneous network planning with the dense deployment of the small cells is one way of overcoming these issues, yet, without proper planning of the integrated network within the same or different frequencies could lead to other problems such as coverage gaps and frequent handovers; due to the natural physics of mm-wave frequencies. Therefore this thesis focuses on bringing ultra-reliable low-latency communication for mm-wave indoor users by increasing the indoor coverage and reducing the frequency of handovers. Towards achieving this thesis’s aim, a detailed literature review of mm-wave coverage is provided in Chapter 2. Moreover, a table that highlights the penetration loss of materials at various frequencies is provided as a result of thorough research in this field, which will be helpful to the researchers investigating this subject. According to our knowledge, this is the first table presenting the most studies that have been conducted in this field. Chapter 3 examines the interference effect of the outdoor base station (BS) inside the building in the context of a heterogeneous network environment. A single building model scenario is created, and the interference analysis is performed to observe the effects of different building materials used as walls. The results reveal the importance of choosing the material type when outdoor BS is close to the building. Moreover, the interference effect of outdoor BS should be minimized when the frequency re-use technique is deployed over very short distances. Chapter 4 presents two-fold contributions, in addition to providing a comprehensive handover study of mm-wave technology. The first study starts with addressing the problem of modelling users’ movement in the indoor environment. Therefore, a user-based indoor mobility prediction via Markov chain with an initial transition matrix is proposed, acquired from Q-learning algorithms. Based on the acquired knowledge of the user’s mobility in the indoor environment, the second contribution of this chapter provides a pre-emptive handover algorithm to provide seamless connection while the user moves within the heterogeneous network. The implementation and evaluation of the proposed algorithm show a reduction in the handover signalling costs by more than 50%, outperforming conventional handover algorithms. Lastly, Chapter 5 contributes to providing robust signal coverage for coverage blind areas and implementing and evaluating the proposed handover algorithm with the intelligent reflective surface. The results show a reduction in the handover signalling costs by more than 33%, outperforming conventional handover algorithms with the pre-emptive handover initiation

    Federated Learning-Based Interference Modeling for Vehicular Dynamic Spectrum Access

    Full text link
    A platoon-based driving is a technology allowing vehicles to follow each other at close distances to, e.g., save fuel. However, it requires reliable wireless communications to adjust their speeds. Recent studies have shown that the frequency band dedicated for vehicle-to-vehicle communications can be too busy for intra-platoon communications. Thus it is reasonable to use additional spectrum resources, of low occupancy, i.e., secondary spectrum channels. The challenge is to model the interference in those channels to enable proper channel selection. In this paper, we propose a two-layered Radio Environment Map (REM) that aims at providing platoons with accurate location-dependent interference models by using the Federated Learning approach. Each platoon is equipped with a Local REM that is updated on the basis of raw interference samples and previous interference model stored in the Global REM. The model in global REM is obtained by merging models reported by platoons. The nodes exchange only parameters of interference models, reducing the required control channel capacity. Moreover, in the proposed architecture platoon can utilize Local REM to predict channel occupancy, even when the connection to the Global REM is temporarily unavailable. The proposed system is validated via computer simulations considering non-trivial interference patterns

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Introduction to Development Engineering

    Get PDF
    This open access textbook introduces the emerging field of Development Engineering and its constituent theories, methods, and applications. It is both a teaching text for students and a resource for researchers and practitioners engaged in the design and scaling of technologies for low-resource communities. The scope is broad, ranging from the development of mobile applications for low-literacy users to hardware and software solutions for providing electricity and water in remote settings. It is also highly interdisciplinary, drawing on methods and theory from the social sciences as well as engineering and the natural sciences. The opening section reviews the history of “technology-for-development” research, and presents a framework that formalizes this body of work and begins its transformation into an academic discipline. It identifies common challenges in development and explains the book’s iterative approach of “innovation, implementation, evaluation, adaptation.” Each of the next six thematic sections focuses on a different sector: energy and environment; market performance; education and labor; water, sanitation and health; digital governance; and connectivity. These thematic sections contain case studies from landmark research that directly integrates engineering innovation with technically rigorous methods from the social sciences. Each case study describes the design, evaluation, and/or scaling of a technology in the field and follows a single form, with common elements and discussion questions, to create continuity and pedagogical consistency. Together, they highlight successful solutions to development challenges, while also analyzing the rarely discussed failures. The book concludes by reiterating the core principles of development engineering illustrated in the case studies, highlighting common challenges that engineers and scientists will face in designing technology interventions that sustainably accelerate economic development. Development Engineering provides, for the first time, a coherent intellectual framework for attacking the challenges of poverty and global climate change through the design of better technologies. It offers the rigorous discipline needed to channel the energy of a new generation of scientists and engineers toward advancing social justice and improved living conditions in low-resource communities around the world

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Contribution to the modelling and evaluation of radio network slicing solutions in 5G

    Get PDF
    Network slicing is a key feature of 5G architecture that allows the partitioning of the network into multiple logical networks, known as network slices, where each of them is customised according to the specific needs of a service or application. Thus, network slicing allows the materialisation of multi-tenant networks, in which a common network infrastructure is shared among multiple communication providers, acting as tenants and each of them using a different network slice. The support of multi-tenancy through slicing in the Radio Access Network (RAN), known as RAN slicing, is particularly challenging because it involves the configuration and operation of multiple and diverse RAN behaviours over the common pool of radio resources available at each of the RAN nodes. Moreover, this configuration needs to be performed in such a way that the specific requirements of each tenant are satisfied and, at the same time, the available radio resources are efficiently used. Therefore, new functionalities that allow the deployment of RAN slices are needed to be introduced at different levels, ranging from Radio Resource Management (RRM) functionalities that incorporate RAN slicing parameters to functionalities that support the lifecycle management of RAN slices. This thesis has addressed this need by proposing, developing and assessing diverse solutions for the support RAN slicing, which has allowed evaluating the capacities, requirements and limitations of network slicing in the RAN from diverse perspectives. Specifically, this thesis is firstly focused on the analytical assessment of RRM functionalities that support multi-tenant and multi-services scenarios, where services are defined according to their 5G QoS requirements. This assessment is conducted through the Markov modelling of admission control policies and the statistical modelling of the resourc allocation, both supporting multiple tenants and multiple services. Secondly, the thesis addresses the problem of slice admission control by proposing a methodology for the estimation of the radio resources required by a RAN slice based on data analytics. This methodology supports the decision on the admission or rejection of new RAN slice creation requests. Thirdly, the thesis explores the potential of artificial intelligence, and specifically, of Deep Reinforcement Learning (DRL) to deal with the capacity sharing problem in RAN slicing scenarios. To this end, a DRL-based capacity sharing solution that distributes the available capacity of a multi-cell scenario among multiple tenants is proposed and assessed. The solution consists in a Multi-Agent Reinforcement Learning (MARL) approach based on Deep Q-Network. Finally, this thesis discuses diverse implementation aspects of the DRL-based capacity sharing solution, including considerations on its compatibility with the standards, the impact of the training on the achieved performance, as well as the tools and technologies required for the deployment of the solution in the real network environment.El Network Slicing és una tecnologia clau de l’arquitectura del 5G que permet dividir la xarxa en múltiples xarxes lògiques, conegudes com a network slices, on cada una es configura d’acord a les necessitats d’un servei o aplicació específic. Així, el network slicing permet la materialització de les xarxes amb múltiples inquilins, on una infraestructura de xarxa comuna es comparteix entre diferents proveïdors de comunicacions, que actuen com a inquilins i utilitzen network slices diferents. El suport de múltiples inquilins mitjançant l’ús del network slicing a la xarxa d’accés ràdio (RAN), que es coneix com a RAN slicing, és un gran repte tecnològic, ja que comporta la configuració i operació de múltiples i diversos comportaments sobre els recursos ràdio disponibles a cadascun dels nodes de la xarxa d’accés. A més a més, aquesta configuració s’ha de portar a terme de forma que els requisits específics de cada inquilí es satisfacin i, al mateix temps, els recursos ràdio disponibles s’utilitzin eficientment. Per tant, és necessari introduir noves funcionalitats a diferents nivells que permetin el desplegament de les RAN slices, des de funcionalitats relacionades amb la gestió dels recursos ràdio (RRM) que incorporin paràmetres per al RAN slicing a funcionalitats que proporcionin suport a la gestió del cicle de vida de les RAN slices. Aquesta tesi ha adreçat aquesta necessitat proposant, desenvolupant i avaluant diverses solucions pel suport del RAN slicing, que han permès analitzar les capacitats, requisits i limitacions del RAN slicing des de diferents perspectives. Específicament, aquesta tesi es centra, en primer lloc, en realitzar una anàlisi de les funcionalitats de RRM que suporten escenaris amb múltiples inquilins i múltiples serveis, on els serveis es defineixen d’acord amb els seus requisits de 5G QoS. Aquesta anàlisi es porta a terme mitjançant la caracterització de polítiques de control d’admissió amb un model de Markov i el modelat estadístic de l’assignació de recursos, ambdós suportant múltiples inquilins i múltiples serveis. En segon lloc, la tesi aborda el problema del control d’admissió de network slices proposant una metodologia per l¿estimació dels recursos requerits per una RAN slice, que es basa en la anàlisi de dades. Aquesta metodologia dona suport a la decisió sobre l’admissió o rebuig de noves sol·licituds de creació de RAN slices. En tercer lloc, la tesi explora el potencial de la intel·ligència artificial, concretament, de les tècniques de Deep Reinforcement Learning (DRL) per a tractar el problema de la compartició de capacitat en escenaris amb RAN slicing. Amb aquest objectiu, es proposa i s’avalua una solució de compartició de capacitat basada en DRL que distribueix la capacitat disponible en un escenari multicel·lular entre múltiples inquilins. Aquesta solució es planteja com una solución de Multi-Agent Reinforcement Learning (MARL) basat en Deep Q-Network. Finalment, aquesta tesi tracta diversos aspectes relacionats amb la implementació de la solució de compartició de capacitat basada en DRL, incloent-hi consideracions sobre la compatibilitat de la solució amb els estàndards, l’impacte de l’entrenament de la solució al seu comportament i rendiment, així com les eines i tecnologies necessàries per al desplegament de la solució en un entorn de xarxa real.El Network Slicing es una tecnología clave de la arquitectura del 5G que permite dividir la red en múltiples redes lógicas, conocidas como network slices, que se configuran de acuerdo a las necesidades de servicios y aplicaciones específicas. Así, el network slicing permite la materialización de las redes con múltiples inquilinos, donde una infraestructura de red común se comparte entre diferentes proveedores de comunicaciones, que actúan como inquilinos y que usan network slices diferentes. El soporte de múltiples inquilinos mediante el uso del network slicing en la red de acceso radio (RAN), que se conoce como RAN slicing, es un gran reto tecnológico, ya que comporta la configuración y operación de múltiples y diversos comportamientos sobre los recursos radio disponibles en cada uno de los nodos de la red de acceso. Además, esta configuración debe realizarse de tal manera que los requisitos específicos de cada inquilino se satisfagan y, al mismo tiempo, los recursos radio disponibles se utilicen eficazmente. Por lo tanto, es necesario introducir nuevas funcionalidades a diferentes niveles que permitan el despliegue de las RAN slices, desde funcionalidades relacionadas con la gestión de recursos radio (RRM) que incorporen parámetros para el RAN slicing a funcionalidades que proporcionen soporte a la gestión del ciclo de vida de las RAN slices. Esta tesis ha abordado esta necesidad proponiendo, desarrollando y evaluando diversas soluciones para el soporte del RAN slicing, lo que ha permitido analizar las capacidades, requisitos y limitaciones del RAN slicing desde diversas perspectivas. Específicamente, esta tesis se centra, en primer lugar, en realizar un análisis de funcionalidades de RRM que soportan escenarios con múltiples inquilinos y múltiples servicios, donde los servicios se definen según sus requisitos de 5G QoS. Este análisis se lleva a cabo mediante la caracterización de políticas de control de admisión mediante un modelo de Markov y el modelado a nivel estadístico de la asignación de recursos, ambos soportando múltiples inquilinos y múltiples servicios. En segundo lugar, la tesis aborda el problema del control de admisión de network slices proponiendo una metodología para la estimación de los recursos radio requeridos por una RAN slice que se basa en análisis de datos. Esta metodología da soporte a la decisión sobre la admisión o el rechazo de nuevas solicitudes de creación de RAN slice. En tercer lugar, la tesis explora el potencial de la inteligencia artificial, y en concreto, de las técnicas de Deep Reinforcement Learning (DRL) para tratar el problema de compartición de capacidad en escenarios de RAN slicing. Para ello, se propone y evalúa una solución de compartición de capacidad basada en DRL que distribuye la capacidad disponible de un escenario multicelular entre múltiples inquilinos. Esta solución se plantea como una solución de Multi-Agent Reinforcement Learning (MARL) basado en Deep Q-Network. Finalmente, en esta tesis se tratan diversos aspectos relacionados con la implementación de la solución de reparto de capacidad basada en DRL, incluyendo consideraciones sobre su compatibilidad con los estándares, el impacto del entrenamiento en el comportamiento y rendimiento conseguido, así como las herramientas y tecnologías necesarias para su despliegue en un entorno de red real.Postprint (published version

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore