6 research outputs found

    Outage analysis of cognitive hybrid satellite-terrestrial networks with hardware impairments and multi-primary users

    Get PDF
    This paper investigates the effects of practical hardware impairments (HIs) on a cognitive hybrid satellite-terrestrial networks (CHSTN) with multiple primary users (PUs). The widely-employed Shadowed-Rician fading distribution is adopted to model the satellite-terrestrial channel. CHSTN can provide comprehensive wireless coverage as well as enhanced spectrum resource usage by considering the requirements of both spectrum efficiency and reliability. Specifically, we derive the closed-form expression of the outage probability (OP) for the considered system in the presence of interference power constraints imposed by multiple adjacent terrestrial PUs. To gain further insights at high signal-to-noise ratios (SNRs), the asymptotic expression for the OP is also derived. Numerical results confirm the correctness and effectiveness of our performance analysis

    Internet of Things-Enabled Overlay Satellite-Terrestrial Networks in the Presence of Interference

    Full text link
    In this paper, we consider an overlay satellite-terrestrial network (OSTN) where an opportunistically selected terrestrial IoT network assist primary satellite communications as well as access the spectrum for its own communications in the presence of combined interference from extra-terrestrial and terrestrial sources. Hereby, a power domain multiplexing is adopted by the IoT network by splitting its power appropriately among the satellite and IoT signals. Relying upon an amplify-and-forward (AF)-based opportunistic IoT network selection strategy that minimizes the outage probability (OP) of satellite network, we derive the closed-form lower bound OP expressions for both the satellite and IoT networks. We further derive the corresponding asymptotic OP expressions to examine the achievable diversity order of two networks. We show that the proposed OSTN with adaptive power splitting factor benefits IoT network while guaranteeing the quality of service (QoS) of satellite network. We verify the numerical results by simulations.Comment: 7 pages, 3 figures, Submitted to National Conference on Communications 202
    corecore