729 research outputs found

    On the MIMO Channel Capacity of Multi-Dimensional Signal Sets

    No full text
    In this contribution we evaluate the capacity of Multi-Input Multi-Output (MIMO) systems using multi-dimensional PSK/QAM signal sets. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable throughput than the corresponding MIMO system designed for full diversity gain, although this is attained at the cost of a higher complexity and a higher SNR. The tradeoffs between diversity gain, multiplexing gain, complexity and bandwidth are studied

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Full Diversity Space-Time Block Codes with Low-Complexity Partial Interference Cancellation Group Decoding

    Full text link
    Partial interference cancellation (PIC) group decoding proposed by Guo and Xia is an attractive low-complexity alternative to the optimal processing for multiple-input multiple-output (MIMO) wireless communications. It can well deal with the tradeoff among rate, diversity and complexity of space-time block codes (STBC). In this paper, a systematic design of full-diversity STBC with low-complexity PIC group decoding is proposed. The proposed code design is featured as a group-orthogonal STBC by replacing every element of an Alamouti code matrix with an elementary matrix composed of multiple diagonal layers of coded symbols. With the PIC group decoding and a particular grouping scheme, the proposed STBC can achieve full diversity, a rate of (2M)/(M+2)(2M)/(M+2) and a low-complexity decoding for MM transmit antennas. Simulation results show that the proposed codes can achieve the full diversity with PIC group decoding while requiring half decoding complexity of the existing codes.Comment: 10 pages, 3 figures

    Generalized Silver Codes

    Full text link
    For an ntn_t transmit, nrn_r receive antenna system (nt×nrn_t \times n_r system), a {\it{full-rate}} space time block code (STBC) transmits nmin=min(nt,nr)n_{min} = min(n_t,n_r) complex symbols per channel use. The well known Golden code is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is of the order of M2.5M^{2.5} for square MM-QAM. The Silver code for 2 transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M2M^2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nrntn_r \geq n_t) but have a high ML-decoding complexity of the order of MntnminM^{n_tn_{min}} (for nr<ntn_r < n_t, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a2^a transmit antennas and any nrn_r with reduced ML-decoding complexity of the order of Mnt(nmin(3/4))0.5M^{n_t(n_{min}-(3/4))-0.5}, is presented. The codes constructed are also information lossless for nrntn_r \geq n_t, like the Perfect codes and allow higher mutual information than the comparable punctured Perfect codes for nr<ntn_r < n_t. These codes are referred to as the {\it generalized Silver codes}, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information Theory. This revised version has 30 pages, 7 figures and Section III has been completely revise
    corecore