5,159 research outputs found

    Computation Rate Maximization in UAV-Enabled Wireless Powered Mobile-Edge Computing Systems

    Full text link
    Mobile edge computing (MEC) and wireless power transfer (WPT) are two promising techniques to enhance the computation capability and to prolong the operational time of low-power wireless devices that are ubiquitous in Internet of Things. However, the computation performance and the harvested energy are significantly impacted by the severe propagation loss. In order to address this issue, an unmanned aerial vehicle (UAV)-enabled MEC wireless powered system is studied in this paper. The computation rate maximization problems in a UAV-enabled MEC wireless powered system are investigated under both partial and binary computation offloading modes, subject to the energy harvesting causal constraint and the UAV's speed constraint. These problems are non-convex and challenging to solve. A two-stage algorithm and a three-stage alternative algorithm are respectively proposed for solving the formulated problems. The closed-form expressions for the optimal central processing unit frequencies, user offloading time, and user transmit power are derived. The optimal selection scheme on whether users choose to locally compute or offload computation tasks is proposed for the binary computation offloading mode. Simulation results show that our proposed resource allocation schemes outperforms other benchmark schemes. The results also demonstrate that the proposed schemes converge fast and have low computational complexity.Comment: This paper has been accepted by IEEE JSA

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Multi-tier Drone Architecture for 5G/B5G Cellular Networks: Challenges, Trends, and Prospects

    Full text link
    Drones (or unmanned aerial vehicles [UAVs]) are expected to be an important component of fifth generation (5G)/beyond 5G (B5G) cellular architectures that can potentially facilitate wireless broadcast or point-to-multipoint transmissions. The distinct features of various drones such as the maximum operational altitude, communication, coverage, computation, and endurance impel the use of a multi-tier architecture for future drone-cell networks. In this context, this article focuses on investigating the feasibility of multi-tier drone network architecture over traditional single-tier drone networks and identifying the scenarios in which drone networks can potentially complement the traditional RF-based terrestrial networks. We first identify the challenges associated with multi-tier drone networks as well as drone-assisted cellular networks. We then review the existing state-of-the-art innovations in drone networks and drone-assisted cellular networks. We then investigate the performance of a multi-tier drone network in terms of spectral efficiency of downlink transmission while illustrating the optimal intensity and altitude of drones in different tiers numerically. Our results demonstrate the specific network load conditions (i.e., ratio of user intensity and base station intensity) where deployment of drones can be beneficial (in terms of spectral efficiency of downlink transmission) for conventional terrestrial cellular networks

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Resource Management of energy-aware Cognitive Radio Networks and cloud-based Infrastructures

    Full text link
    The field of wireless networks has been rapidly developed during the past decade due to the increasing popularity of the mobile devices. The great demand for mobility and connectivity makes wireless networking a field whose continuous technological development is very important as new challenges and issues are arising. Many scientists and researchers are currently engaged in developing new approaches and optimization methods in several topics of wireless networking. This survey paper study works from the following topics: Cognitive Radio Networks, Interactive Broadcasting, Energy Efficient Networks, Cloud Computing and Resource Management, Interactive Marketing and Optimization

    Internet of Things: An Overview

    Full text link
    As technology proceeds and the number of smart devices continues to grow substantially, need for ubiquitous context-aware platforms that support interconnected, heterogeneous, and distributed network of devices has given rise to what is referred today as Internet-of-Things. However, paving the path for achieving aforementioned objectives and making the IoT paradigm more tangible requires integration and convergence of different knowledge and research domains, covering aspects from identification and communication to resource discovery and service integration. Through this chapter, we aim to highlight researches in topics including proposed architectures, security and privacy, network communication means and protocols, and eventually conclude by providing future directions and open challenges facing the IoT development.Comment: Keywords: Internet of Things; IoT; Web of Things; Cloud of Thing

    A Survey on Modeling Energy Consumption of Cloud Applications: Deconstruction, State of the Art, and Trade-off Debates

    Full text link
    Given the complexity and heterogeneity in Cloud computing scenarios, the modeling approach has widely been employed to investigate and analyze the energy consumption of Cloud applications, by abstracting real-world objects and processes that are difficult to observe or understand directly. It is clear that the abstraction sacrifices, and usually does not need, the complete reflection of the reality to be modeled. Consequently, current energy consumption models vary in terms of purposes, assumptions, application characteristics and environmental conditions, with possible overlaps between different research works. Therefore, it would be necessary and valuable to reveal the state-of-the-art of the existing modeling efforts, so as to weave different models together to facilitate comprehending and further investigating application energy consumption in the Cloud domain. By systematically selecting, assessing and synthesizing 76 relevant studies, we rationalized and organized over 30 energy consumption models with unified notations. To help investigate the existing models and facilitate future modeling work, we deconstructed the runtime execution and deployment environment of Cloud applications, and identified 18 environmental factors and 12 workload factors that would be influential on the energy consumption. In particular, there are complicated trade-offs and even debates when dealing with the combinational impacts of multiple factors.Comment: in pres

    Mobile Cloud Computing with a UAV-Mounted Cloudlet: Optimal Bit Allocation for Communication and Computation

    Full text link
    Mobile cloud computing relieves the tension between compute-intensive mobile applications and battery-constrained mobile devices by enabling the offloading of computing tasks from mobiles to a remote processors. This paper considers a mobile cloud computing scenario in which the "cloudlet" processor that provides offloading opportunities to mobile devices is mounted on unmanned aerial vehicles (UAVs) to enhance coverage. Focusing on a slotted communication system with frequency division multiplexing between mobile and UAV, the joint optimization of the number of input bits transmitted in the uplink by the mobile to the UAV, the number of input bits processed by the cloudlet at the UAV, and the number of output bits returned by the cloudlet to the mobile in the downlink in each slot is carried out by means of dual decomposition under maximum latency constraints with the aim of minimizing the mobile energy consumption. Numerical results reveal the critical importance of an optimized bit allocation in order to enable significant energy savings as compared to local mobile execution for stringent latency constraints.Comment: 21 pages, 3 figures, 1 Table, accepted in IET Communication
    • …
    corecore