480 research outputs found

    An Efficient Distributed Nash Equilibrium Seeking with Compressed and Event-triggered Communication

    Full text link
    Distributed Nash equilibrium (NE) seeking problems for networked games have been widely investigated in recent years. Despite the increasing attention, communication expenditure is becoming a major bottleneck for scaling up distributed approaches within limited communication bandwidth between agents. To reduce communication cost, an efficient distributed NE seeking (ETC-DNES) algorithm is proposed to obtain an NE for games over directed graphs, where the communication efficiency is improved by event-triggered exchanges of compressed information among neighbors. ETC-DNES saves communication costs in both transmitted bits and rounds of communication. Furthermore, our method only requires the row-stochastic property of the adjacency matrix, unlike previous approaches that hinged on doubly-stochastic communication matrices. We provide convergence guarantees for ETC-DNES on games with restricted strongly monotone mappings and testify its efficiency with no sacrifice on the accuracy. The algorithm and analysis are extended to a compressed algorithm with stochastic event-triggered mechanism (SETC-DNES). In SETC-DNES, we introduce a random variable in the triggering condition to further enhance algorithm efficiency. We demonstrate that SETC-DNES guarantees linear convergence to the NE while achieving even greater reductions in communication costs compared to ETC-DNES. Finally, numerical simulations illustrate the effectiveness of the proposed algorithms

    Distributed Nash Equilibrium Seeking with Limited Cost Function Knowledge via A Consensus-Based Gradient-Free Method

    Full text link
    This paper considers a distributed Nash equilibrium seeking problem, where the players only have partial access to other players' actions, such as their neighbors' actions. Thus, the players are supposed to communicate with each other to estimate other players' actions. To solve the problem, a leader-following consensus gradient-free distributed Nash equilibrium seeking algorithm is proposed. This algorithm utilizes only the measurements of the player's local cost function without the knowledge of its explicit expression or the requirement on its smoothness. Hence, the algorithm is gradient-free during the entire updating process. Moreover, the analysis on the convergence of the Nash equilibrium is studied for the algorithm with both diminishing and constant step-sizes, respectively. Specifically, in the case of diminishing step-size, it is shown that the players' actions converge to the Nash equilibrium almost surely, while in the case of fixed step-size, the convergence to the neighborhood of the Nash equilibrium is achieved. The performance of the proposed algorithm is verified through numerical simulations

    Privacy-Preserving Distributed Optimization and Learning

    Full text link
    Distributed optimization and learning has recently garnered great attention due to its wide applications in sensor networks, smart grids, machine learning, and so forth. Despite rapid development, existing distributed optimization and learning algorithms require each agent to exchange messages with its neighbors, which may expose sensitive information and raise significant privacy concerns. In this survey paper, we overview privacy-preserving distributed optimization and learning methods. We first discuss cryptography, differential privacy, and other techniques that can be used for privacy preservation and indicate their pros and cons for privacy protection in distributed optimization and learning. We believe that among these approaches, differential privacy is most promising due to its low computational and communication complexities, which are extremely appealing for modern learning based applications with high dimensions of optimization variables. We then introduce several differential-privacy algorithms that can simultaneously ensure privacy and optimization accuracy. Moreover, we provide example applications in several machine learning problems to confirm the real-world effectiveness of these algorithms. Finally, we highlight some challenges in this research domain and discuss future directions.Comment: Accepted as a chapter in the Encyclopedia of Systems and Control Engineering published by Elsevie

    Quantized distributed Nash equilibrium seeking under DoS attacks: A quantized consensus based approach

    Full text link
    This paper studies distributed Nash equilibrium (NE) seeking under Denial-of-Service (DoS) attacks and quantization. The players can only exchange information with their own direct neighbors. The transmitted information is subject to quantization and packet losses induced by malicious DoS attacks. We propose a quantized distributed NE seeking strategy based on the approach of dynamic quantized consensus. To solve the quantizer saturation problem caused by DoS attacks, the quantization mechanism is equipped to have zooming-in and holding capabilities, in which the holding capability is consistent with the results in quantized consensus under DoS. A sufficient condition on the number of quantizer levels is provided, under which the quantizers are free from saturation under DoS attacks. The proposed distributed quantized NE seeking strategy is shown to have the so-called maximum resilience to DoS attacks. Namely, if the bound characterizing the maximum resilience is violated, an attacker can deny all the transmissions and hence distributed NE seeking is impossible

    Distributed Nash equilibrium tracking via the alternating direction method of multipliers

    Get PDF
    summary:Nash equilibrium is recognized as an important solution concept in non-cooperative game theory due to its broad applicability to economics, social sciences, computer science, and engineering. In view of its importance, substantial progress has been made to seek a static Nash equilibrium using distributed methods. However, these approaches are inapplicable in dynamic environments because, in this setting, the Nash equilibrium constantly changes over time. In this paper, we propose a dynamic algorithm that can track the time-varying Nash equilibrium in a non-cooperative game. Our approach enables each player to update its action using an alternating direction method of multipliers while ensuring this estimated action of each player always converges to a neighborhood of the Nash equilibrium at each sampling instant. We prove that the final tracking error is linearly proportional to the sampling interval, which implies that the tracking error can be sufficiently close to zero when the sampling interval is small enough. Finally, numerical simulations are conducted to verify the correctness of our theoretical results

    Differentially-private Distributed Algorithms for Aggregative Games with Guaranteed Convergence

    Full text link
    The distributed computation of a Nash equilibrium in aggregative games is gaining increased traction in recent years. Of particular interest is the mediator-free scenario where individual players only access or observe the decisions of their neighbors due to practical constraints. Given the competitive rivalry among participating players, protecting the privacy of individual players becomes imperative when sensitive information is involved. We propose a fully distributed equilibrium-computation approach for aggregative games that can achieve both rigorous differential privacy and guaranteed computation accuracy of the Nash equilibrium. This is in sharp contrast to existing differential-privacy solutions for aggregative games that have to either sacrifice the accuracy of equilibrium computation to gain rigorous privacy guarantees, or allow the cumulative privacy budget to grow unbounded, hence losing privacy guarantees, as iteration proceeds. Our approach uses independent noises across players, thus making it effective even when adversaries have access to all shared messages as well as the underlying algorithm structure. The encryption-free nature of the proposed approach, also ensures efficiency in computation and communication. The approach is also applicable in stochastic aggregative games, able to ensure both rigorous differential privacy and guaranteed computation accuracy of the Nash equilibrium when individual players only have stochastic estimates of their pseudo-gradient mappings. Numerical comparisons with existing counterparts confirm the effectiveness of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:2202.0111

    Distributed Delay-Tolerant Strategies for Equality-Constraint Sum-Preserving Resource Allocation

    Full text link
    This paper proposes two nonlinear dynamics to solve constrained distributed optimization problem for resource allocation over a multi-agent network. In this setup, coupling constraint refers to resource-demand balance which is preserved at all-times. The proposed solutions can address various model nonlinearities, for example, due to quantization and/or saturation. Further, it allows to reach faster convergence or to robustify the solution against impulsive noise or uncertainties. We prove convergence over weakly connected networks using convex analysis and Lyapunov theory. Our findings show that convergence can be reached for general sign-preserving odd nonlinearity. We further propose delay-tolerant mechanisms to handle general bounded heterogeneous time-varying delays over the communication network of agents while preserving all-time feasibility. This work finds application in CPU scheduling and coverage control among others. This paper advances the state-of-the-art by addressing (i) possible nonlinearity on the agents/links, meanwhile handling (ii) resource-demand feasibility at all times, (iii) uniform-connectivity instead of all-time connectivity, and (iv) possible heterogeneous and time-varying delays. To our best knowledge, no existing work addresses contributions (i)-(iv) altogether. Simulations and comparative analysis are provided to corroborate our contributions
    • …
    corecore