3 research outputs found

    Optimisation des mémoires dans le flot de conception des systèmes multiprocesseurs sur puces pour des applications de type multimédia

    Get PDF
    RÉSUMÉ Les systèmes multiprocesseurs sur puce (MPSoC) constituent l'un des principaux moteurs de la révolution industrielle des semi-conducteurs. Les MPSoCs jouissent d’une popularité grandissante dans le domaine des systèmes embarqués. Leur grande capacité de parallélisation à un très haut niveau d'intégration, en font de bons candidats pour les systèmes et les applications telles que les applications multimédia. La consommation d’énergie, la capacité de calcul et l’espace de conception sont les éléments dont dépendent les performances de ce type d’applications. La mémoire est le facteur clé permettant d’améliorer de façon substantielle leurs performances. Avec l’arrivée des applications multimédias embarquées dans l’industrie, le problème des gains de performances est vital. La masse de données traitées par ces applications requiert une grande capacité de calcul et de mémoire. Dernièrement, de nouveaux modèles de programmation ont fait leur apparition. Ces modèles offrent une programmation de plus haut niveau pour répondre aux besoins croissants des MPSoCs, d’où la nécessité de nouvelles approches d'optimisation et de placement pour les systèmes embarqués et leurs modèles de programmation. La conception niveau système des architectures MPSoCs pour les applications de type multimédia constitue un véritable défi technique. L’objectif général de cette thèse est de relever ce défi en trouvant des solutions. Plus spécifiquement, cette thèse se propose d’introduire le concept d’optimisation mémoire dans le flot de conception niveau système et d’observer leur impact sur différents modèles de programmation utilisés lors de la conception de MPSoCs. Il s’agit, autrement dit, de réaliser l’unification du domaine de la compilation avec celui de la conception niveau système pour une meilleure conception globale. La contribution de cette thèse est de proposer de nouvelles approches pour les techniques d'optimisation mémoire pour la conception MPSoCs avec différents modèles de programmation. Nos travaux de recherche concernent l'intégration des techniques d’optimisation mémoire dans le flot de conception de MPSoCs pour différents types de modèle de programmation. Ces travaux ont été exécutés en collaboration avec STMicroelectronics.----------ABSTRACT Multiprocessor systems-on-chip (MPSoC) are defined as one of the main drivers of the industrial semiconductors revolution. MPSoCs are gaining popularity in the field of embedded systems. Pursuant to their great ability to parallelize at a very high integration level, they are good candidates for systems and applications such as multimedia. Memory is becoming a key player for significant improvements in these applications (i.e. power, performance and area). With the emergence of more embedded multimedia applications in the industry, this issue becomes increasingly vital. The large amount of data manipulated by these applications requires high-capacity calculation and memory. Lately, new programming models have been introduced. These programming models offer a higher programming level to answer the increasing needs of MPSoCs. This leads to the need of new optimization and mapping approaches suitable for embedded systems and their programming models. The overall objective of this research is to find solutions to the challenges of system level design of applications such as multimedia. This entails the development of new approaches and new optimization techniques. The specific objective of this research is to introduce the concept of memory optimization in the system level conception flow and study its impact on different programming models used for MPSoCs’ design. In other words, it is the unification of the compilation and system level design domains. The contribution of this research is to propose new approaches for memory optimization techniques for MPSoCs’ design in different programming models. This thesis relates to the integration of memory optimization to varying programming model types in the MPSoCs conception flow. Our research was done in collaboration with STMicroelectronics

    Design and Evaluation of the Hamal Parallel Computer

    Get PDF
    Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine

    Design and evaluation of the Hamal parallel computer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2003."December 2002."Includes bibliographical references (p. 145-152).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization.(cont.) Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.by J.B. Grossman.Ph.D
    corecore