2 research outputs found

    Performance Analysis of Energy Detection over Mixture Gamma based Fading Channels with Diversity Reception

    Full text link
    The present paper is devoted to the evaluation of energy detection based spectrum sensing over different multipath fading and shadowing conditions. This is realized by means of a unified and versatile approach that is based on the particularly flexible mixture gamma distribution. To this end, novel analytic expressions are firstly derived for the probability of detection over MG fading channels for the conventional single-channel communication scenario. These expressions are subsequently employed in deriving closed-form expressions for the case of square-law combining and square-law selection diversity methods. The validity of the offered expressions is verified through comparisons with results from respective computer simulations. Furthermore, they are employed in analyzing the performance of energy detection over multipath fading, shadowing and composite fading conditions, which provides useful insighs on the performance and design of future cognitive radio based communication systems.Comment: To appear in the IEEE WiMob 2015 conference proceeding

    Energy Detection Based Spectrum Sensing over Enriched Multipath Fading Channels

    Get PDF
    Energy detection has been for long constituting the most popular sensing method in RADAR and cognitive radio systems. The present paper investigates the sensing behaviour of an energy detector over Hoyt fading channels, which have been extensively shown to provide rather accurate characterization of enriched multipath fading conditions. To this end, a simple series representation and an exact closed-form expression are firstly derived for the corresponding average probability of detection for the conventional single-channel communication scenario. These expressions are subsequently employed in deriving novel analytic results for the case of both collaborative detection and squarelaw selection diversity reception. The derived expressions have a relatively tractable algebraic representation which renders them convenient to handle both analytically and numerically. As a result, they can be utilized in quantifying the effect of fading in energy detection based spectrum sensing and in the determination of the trade-offs between sensing performance and energy efficiency in cognitive radio communications. Based on this, it is shown that the performance of the energy detector depends highly on the severity of fading as even slight variations of the fading conditions affect the value of the average probability of detection. It is also clearly shown that the detection performance improves substantially as the number of branches or collaborating users increase. This improvement is substantial in both moderate and severe fading conditions and can practically provide full compensation for the latter case
    corecore