110,205 research outputs found

    nbodykit: an open-source, massively parallel toolkit for large-scale structure

    Get PDF
    We present nbodykit, an open-source, massively parallel Python toolkit for analyzing large-scale structure (LSS) data. Using Python bindings of the Message Passing Interface (MPI), we provide parallel implementations of many commonly used algorithms in LSS. nbodykit is both an interactive and scalable piece of scientific software, performing well in a supercomputing environment while still taking advantage of the interactive tools provided by the Python ecosystem. Existing functionality includes estimators of the power spectrum, 2 and 3-point correlation functions, a Friends-of-Friends grouping algorithm, mock catalog creation via the halo occupation distribution technique, and approximate N-body simulations via the FastPM scheme. The package also provides a set of distributed data containers, insulated from the algorithms themselves, that enable nbodykit to provide a unified treatment of both simulation and observational data sets. nbodykit can be easily deployed in a high performance computing environment, overcoming some of the traditional difficulties of using Python on supercomputers. We provide performance benchmarks illustrating the scalability of the software. The modular, component-based approach of nbodykit allows researchers to easily build complex applications using its tools. The package is extensively documented at http://nbodykit.readthedocs.io, which also includes an interactive set of example recipes for new users to explore. As open-source software, we hope nbodykit provides a common framework for the community to use and develop in confronting the analysis challenges of future LSS surveys.Comment: 18 pages, 7 figures. Feedback very welcome. Code available at https://github.com/bccp/nbodykit and for documentation, see http://nbodykit.readthedocs.i

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011

    Configuration of Distributed Message Converter Systems using Performance Modeling

    Get PDF
    To find a configuration of a distributed system satisfying performance goals is a complex search problem that involves many design parameters, like hardware selection, job distribution and process configuration. Performance models are a powerful tools to analyse potential system configurations, however, their evaluation is expensive, such that only a limited number of possible configurations can be evaluated. In this paper we present a systematic method to find a satisfactory configuration with feasible effort, based on a two-step approach. First, using performance estimates a hardware configuration is determined and then the software configuration is incrementally optimized evaluating Layered Queueing Network models. We applied this method to the design of performant EDI converter systems in the financial domain, where increasing message volumes need to be handled due to the increasing importance of B2B interaction

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Design Concept for a Failover Mechanism in Distributed SDN Controllers

    Get PDF
    Software defined networking allows the separation of the control plane and data plane in networking. It provides scalability, programmability, and centralized control. It will use these traits to reach ubiquitous connectivity. Like all concepts software defined networking does not offer these advantages without a cost. By utilizing a centralized controller, a single point of failure is created. To address this issue, this paper proposes a distributed controller failover. This failover will provide a mechanism for recovery when controllers are not located in the same location. This failover mechanism is based on number of hops from orphan nodes to the controller in addition to the link connection. This mechanism was simulated in Long Term Evolution telecommunications architecture
    corecore