5,857 research outputs found

    Matrix Completion in Colocated MIMO Radar: Recoverability, Bounds & Theoretical Guarantees

    Full text link
    It was recently shown that low rank matrix completion theory can be employed for designing new sampling schemes in the context of MIMO radars, which can lead to the reduction of the high volume of data typically required for accurate target detection and estimation. Employing random samplers at each reception antenna, a partially observed version of the received data matrix is formulated at the fusion center, which, under certain conditions, can be recovered using convex optimization. This paper presents the theoretical analysis regarding the performance of matrix completion in colocated MIMO radar systems, exploiting the particular structure of the data matrix. Both Uniform Linear Arrays (ULAs) and arbitrary 2-dimensional arrays are considered for transmission and reception. Especially for the ULA case, under some mild assumptions on the directions of arrival of the targets, it is explicitly shown that the coherence of the data matrix is both asymptotically and approximately optimal with respect to the number of antennas of the arrays involved and further, the data matrix is recoverable using a subset of its entries with minimal cardinality. Sufficient conditions guaranteeing low matrix coherence and consequently satisfactory matrix completion performance are also presented, including the arbitrary 2-dimensional array case.Comment: 19 pages, 7 figures, under review in Transactions on Signal Processing (2013

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Two-Stage LASSO ADMM Signal Detection Algorithm For Large Scale MIMO

    Full text link
    This paper explores the benefit of using some of the machine learning techniques and Big data optimization tools in approximating maximum likelihood (ML) detection of Large Scale MIMO systems. First, large scale MIMO detection problem is formulated as a LASSO (Least Absolute Shrinkage and Selection Operator) optimization problem. Then, Alternating Direction Method of Multipliers (ADMM) is considered in solving this problem. The choice of ADMM is motivated by its ability of solving convex optimization problems by breaking them into smaller sub-problems, each of which are then easier to handle. Further improvement is obtained using two stages of LASSO with interference cancellation from the first stage. The proposed algorithm is investigated at various modulation techniques with different number of antennas. It is also compared with widely used algorithms in this field. Simulation results demonstrate the efficacy of the proposed algorithm for both uncoded and coded cases.Comment: 5 pages, 4 figure

    Towards Dual-functional Radar-Communication Systems: Optimal Waveform Design

    Get PDF
    We focus on a dual-functional multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single transmitter communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multi-user interference. First, we consider both the omnidirectional and directional beampattern design problems, where the closed-form globally optimal solutions are obtained. Based on these waveforms, we further consider a weighted optimization to enable a flexible trade-off between radar and communications performance and introduce a low-complexity algorithm. The computational costs of the above three designs are shown to be similar to the conventional zero-forcing (ZF) precoding. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution and derive its worst-case complexity as a function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches by numerical results.Comment: 13 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore