29,281 research outputs found

    COMPILER TECHNIQUES FOR EFFICIENT COMMUNICATIONS IN MULTIPROCESSOR SYSTEMS

    Get PDF
    Technical advances have brought circuit switching back to the stage of interconnection network design for high performance computing. Although circuit switching has long connection establishment delays and the dedication of connections prevents other communicating nodes from sharing the network, it has simple control logic and significant cost advantage over packet or wormhole switching. With the proper assistance from compilers, circuit switching has the potential of providing significant performance benefits when connections can be established prior to the actual communication. This dissertation presents a novel compilation framework for achieving efficient communications in circuit switching interconnection networks. The goal of the framework is to identify communication patterns in Single-Program-Multiple-Data (SPMD) parallel applications and compile these patterns as network configuration directives. This can significantly reduce the communication overhead on circuit switching interconnection networks. A powerful representation scheme is developed in this research to capture the property of communication patterns and allow manipulation of these patterns. Based on the temporal and spatial localities of communications and the capability of the compiler to identify the communication patterns, we classify communication patterns into three categories - static, persistent, and dynamic. We target static and persistent communications, which are dominant in most parallel applications. To identify communication patterns, we develop a novel symbolic expression analysis. We develop certain compiler techniques for analyzing communication patterns. Since the underlying network capacity is limited, we develop an algorithm to partition the program into phases based on the communication requirements and network capacity. To demonstrate the effectiveness of our framework, we implement an experimental compiler. The compiler identifies the communication patterns from the source code, partitions the program into phases, and inserts the network configuration directives at phase boundaries to achieve efficient communications. The compiler also can generate communication traces, which provides useful information about the communication pattern correlated to the structure of the source code. We develop a multiprocessor system simulator to evaluate our techniques. Our simulation-based performance analysis demonstrates that using our compiler techniques can achieve the same level, or even better level of communication performance than fast packet switching networks while using much less expensive circuit switches

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Regulatory practice in the European telecommunications sector: Normative justification and practical application

    Get PDF
    The telecommunications sector is characterized by economies of scale and scope, high sunk costs, and strong network effects. This combination may facilitate monopolization and abuse of market power. The present study evaluates the need for sector-specific regulation in this sector. It is shown that there is a conflict between static and dynamic efficiency goals. A comparison of two prominent regulatory approaches for the telecommunications sector shows that the disaggregated approach takes account of this conflict most adequately, as it is committed to minimal regulation. The European regulatory framework for electronic communications markets is based on economic theory, and could principally be used to limit regulation to network areas in which stable networkspecific market power is localized. However, especially the criteria for the assessment of significant market power (SMP) are applied too liberally, such that, in practice, overregulation has resulted. --

    Performance modeling of fault-tolerant circuit-switched communication networks

    Get PDF
    Circuit switching (CS) has been suggested as an efficient switching method for supporting simultaneous communications (such as data, voice, and images) across parallel systems due to its ability to preserve both communication performance and fault-tolerant demands in such systems. In this paper we present an efficient scheme to capture the mean message latency in 2D torus with CS in the presence of faulty components. We have also conducted extensive simulation experiments, the results of which are used to validate the analytical mode
    • 

    corecore