696 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Spatial Coordination Strategies in Future Ultra-Dense Wireless Networks

    Full text link
    Ultra network densification is considered a major trend in the evolution of cellular networks, due to its ability to bring the network closer to the user side and reuse resources to the maximum extent. In this paper we explore spatial resources coordination as a key empowering technology for next generation (5G) ultra-dense networks. We propose an optimization framework for flexibly associating system users with a densely deployed network of access nodes, opting for the exploitation of densification and the control of overhead signaling. Combined with spatial precoding processing strategies, we design network resources management strategies reflecting various features, namely local vs global channel state information knowledge exploitation, centralized vs distributed implementation, and non-cooperative vs joint multi-node data processing. We apply these strategies to future UDN setups, and explore the impact of critical network parameters, that is, the densification levels of users and access nodes as well as the power budget constraints, to users performance. We demonstrate that spatial resources coordination is a key factor for capitalizing on the gains of ultra dense network deployments.Comment: An extended version of a paper submitted to ISWCS'14, Special Session on Empowering Technologies of 5G Wireless Communication

    GPON and V-band mmWave in green backhaul solution for 5G ultra-dense network

    Get PDF
    Ultra-dense network (UDN) is characterized by massive deployment of small cells which resulted into complex backhauling of the cells. This implies that for 5G UDN to be energy efficient, appropriate backhauling solutions must be provided. In this paper, we have evaluated the performance of giga passive optical network (GPON) and V-band millimetre wave (mmWave) in serving as green backhaul solution for 5G UDN. The approach was to first reproduce existing backhaul solutions in Very Dense Network (VDN) scenario which served as benchmark for the performance evaluation for the UDN scenario. The best two solutions, GPON and V-band solutions from the VDN were then deployed in 5G UDN scenario. The research was done by simulation in MATLAB. The performance metrics used were power consumption and energy efficiency against the normalized hourly traffic profile. The result revealed that GPON and V-band mmWave outperformed other solutions in VDN scenario. However, this performance significantly dropped in the UDN scenariodue to higher data traffic requirement of UDN compared to VDN. Thus, it can be concluded that GPON and V-band mmWave are not best suited to serve as green backhaul solution for 5G UDN necessitating further investigation of other available backhaul technologies
    • …
    corecore