1 research outputs found

    The SER Analysis of Rayleigh, Rician and Nakagami Channels at Various Relay Locations in Cooperative Networks

    Get PDF
    Reliable communication between transmitter and receiver is accomplished by cooperative diversity techniques. Sending of data in various paths has greatly improved the performance of communication. We have studied the performance of Amplify-and-Forward (AF) based network in this work for diverse relay location at Nakagami, Rician and Rayleigh fading channels. The relay performance in Amplify-and-Forward (AF) protocol based on Symbol Error Rate (SER) against Signal-to-Noise Ratio (SNR) in dBs is calculated. The software that is used to construct Monte-Carlo link level simulation is MATLAB. The effects of a relay at changed location in diverse channels accompanied with Additive White Gaussian noise (AWGN) is also calculated. BPSK modulation scheme is used for the transfer of information between the source, relay and destination node. The signals are combined through Maximum Ratio Combining method (MRC).Reliable communication between transmitter and receiver is accomplished by cooperative diversity techniques. Sending of data in various paths have greatly improved the performance of communication. We have studied the performance of Amplify-and-Forward (AF) based network in this work for diverse relay location at Nakagami, Rician and Rayleigh fading channels. The relay performance in Amplify-and-Forward (AF) protocol based on Symbol Error Rate (SER) against Signal-to-Noise Ratio (SNR) in dBs is calculated. The software that is used to construct Monte-Carlo link level simulation is MATLAB. The effects of relay at changed location in diverse channels accompanied with Additive White Gaussian noise (AWGN) is also calculated. BPSK modulation scheme is used for the transfer of information between the source, relay and destination node. The signals are combined through Maximum Ratio Combining method (MRC)
    corecore