620 research outputs found

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    QoS-aware architecture for FHMIP micromobility

    Get PDF
    Wireless networks will certainly run applications with strict QoS requirements and so, micro-mobility protocols such as fast hierarchical mobile IPv6 (FHMIP) are useful tools to accomplish this new feature. The FHMIP is an effective scheme to reduce Mobile IPv6 handover disruption, however it does not support application's QoS requirements. Therefore, in order to provide QoS guarantees for real-time applications it is necessary to develop new traffic management schemes; this implies the optimization of network mobility support and also some network congestion control. A traffic management scheme of this type should take into account the QoS requirements of handover users and should implement a resource management (RM) scheme in order to achieve this. In this paper, a new RM scheme for the DiffServ QoS model is proposed. This new scheme is implemented by access routers as an extension to FHMIP micromobility protocol. In order to prevent QoS degradation of the existing traffic, access routers should evaluate the impact of admitting a new mobile node (MN), previously to the handover. This evaluation and sequent decision on wether admitting or refusing MN's traffic is based on a measurement-based admission control (MBAC) algorithm. This architecture, that has been implemented and tested using ns-2, includes a simple signaling protocol, a traffic descriptor and exhibits an adaptive behavior to traffic QoS requirements. All the necessary measurements are aggregated by class-of-service, thus avoiding maintaining state on the individual flows.(undefined

    Fifth ERCIM workshop on e-mobility

    Get PDF

    Admission control in multiservice IP networks : architectural issues and trends

    Get PDF
    The trend toward the integration of current and emerging applications and services in the Internet has launched new challenges regarding service deployment and management. Within service management, admission control (AC) has been recognized as a convenient mechanism to keep services under controlled load and assure the required QoS levels, bringing consistency to the services offered. In this context, this article discusses the role of AC in multiservice IP networks and surveys current and representative AC approaches. We address and compare the architectural principles of these AC approaches and their main features, virtues and limitations that impact on the quality control of network services. We identify important design aspects that contribute to the successful deployment of flexible and scalable AC solutions in multiservice networks

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support
    • …
    corecore