1,359 research outputs found

    Incentive Mechanism Design for Cache-Assisted D2D Communications: A Mobility-Aware Approach

    Full text link
    Caching popular contents at mobile devices, assisted by device-to-device (D2D) communications, is considered as a promising technique for mobile content delivery. It can effectively reduce backhaul traffic and service cost, as well as improving the spectrum efficiency. However, due to the selfishness of mobile users, incentive mechanisms will be needed to motivate device caching. In this paper, we investigate incentive mechanism design in cache-assisted D2D networks, taking advantage of the user mobility information. An inter-contact model is adopted to capture the average time between two consecutive contacts of each device pair. A Stackelberg game is formulated, where each user plays as a follower aiming at maximizing its own utility and the mobile network operator (MNO) plays as a leader aiming at minimizing the cost. Assuming that user responses can be predicted by the MNO, a cost minimization problem is formulated. Since this problem is NP-hard, we reformulate it as a non-negative submodular maximization problem and develop (14+ϵ)(\frac{1}{4+\epsilon})-approximation local search algorithm to solve it. In the simulation, we demonstrate that the local search algorithm provides near optimal performance. By comparing with other caching strategies, we validate the effectiveness of the proposed incentive-based mobility-aware caching strategy.Comment: 5 pages, 3 figures, accepted to IEEE SPAWC, Sapporo, Japan, July 201

    Fog Computing based Radio Access Networks: Issues and Challenges

    Full text link
    A fog computing based radio access network (F-RAN) is presented in this article as a promising paradigm for the fifth generation (5G) wireless communication system to provide high spectral and energy efficiency. The core idea is to take full advantages of local radio signal processing, cooperative radio resource management, and distributed storing capabilities in edge devices, which can decrease the heavy burden on fronthaul and avoid large-scale radio signal processing in the centralized baseband unit pool. This article comprehensively presents the system architecture and key techniques of F-RANs. In particular, key techniques and their corresponding solutions, including transmission mode selection and interference suppression, are discussed. Open issues in terms of edge caching, software-defined networking, and network function virtualization, are also identified.Comment: 21 pages, 7 figures, accepted by IEEE Networks Magazin

    Analysis on Cache-enabled Wireless Heterogeneous Networks

    Full text link
    Caching the popular multimedia content is a promising way to unleash the ultimate potential of wireless networks. In this paper, we contribute to proposing and analyzing the cache-based content delivery in a three-tier heterogeneous network (HetNet), where base stations (BSs), relays and device-to-device (D2D) pairs are included. We advocate to proactively cache the popular contents in the relays and parts of the users with caching ability when the network is off-peak. The cached contents can be reused for frequent access to offload the cellular network traffic. The node locations are first modeled as mutually independent Poisson Point Processes (PPPs) and the corresponding content access protocol is developed. The average ergodic rate and outage probability in the downlink are then analyzed theoretically. We further derive the throughput and the delay based on the \emph{multiclass processor-sharing queue} model and the continuous-time Markov process. According to the critical condition of the steady state in the HetNet, the maximum traffic load and the global throughput gain are investigated. Moreover, impacts of some key network characteristics, e.g., the heterogeneity of multimedia contents, node densities and the limited caching capacities, on the system performance are elaborated to provide a valuable insight

    Recent Advances in Fog Radio Access Networks: Performance Analysis and Radio Resource Allocation

    Full text link
    As a promising paradigm for the fifth generation wireless communication (5G) system, the fog radio access network (F-RAN) has been proposed as an advanced socially-aware mobile networking architecture to provide high spectral efficiency (SE) while maintaining high energy efficiency (EE) and low latency. Recent advents are advocated to the performance analysis and radio resource allocation, both of which are fundamental issues to make F-RANs successfully rollout. This article comprehensively summarizes the recent advances of the performance analysis and radio resource allocation in F-RANs. Particularly, the advanced edge cache and adaptive model selection schemes are presented to improve SE and EE under maintaining a low latency level. The radio resource allocation strategies to optimize SE and EE in F-RANs are respectively proposed. A few open issues in terms of the F-RAN based 5G architecture and the social-awareness technique are identified as well

    Individual Preference Aware Caching Policy Design in Wireless D2D Networks

    Full text link
    Cache-aided wireless device-to-device (D2D) networks allow significant throughput increase, depending on the concentration of the popularity distribution of files. Many studies assume that all users have the same preference distribution; however, this may not be true in practice. This work investigates whether and how the information about individual preferences can benefit cache-aided D2D networks. We examine a clustered network and derive a network utility that considers both the user distribution and channel fading effects into the analysis. We also formulate a utility maximization problem for designing caching policies. This maximization problem can be applied to optimize several important quantities, including throughput, energy efficiency (EE), cost, and hit-rate, and to solve different tradeoff problems. We provide a general approach that can solve the proposed problem under the assumption that users coordinate, then prove that the proposed approach can obtain the stationary point under a mild assumption. Using simulations of practical setups, we show that performance can improve significantly with proper exploitation of individual preferences. We also show that different types of tradeoffs exist between different performance metrics and that they can be managed through caching policy and cooperation distance designs.Comment: Accepted by IEEE Transactions on Wireless Communication

    Cloud Computing - Architecture and Applications

    Full text link
    In the era of Internet of Things and with the explosive worldwide growth of electronic data volume, and associated need of processing, analysis, and storage of such humongous volume of data, it has now become mandatory to exploit the power of massively parallel architecture for fast computation. Cloud computing provides a cheap source of such computing framework for large volume of data for real-time applications. It is, therefore, not surprising to see that cloud computing has become a buzzword in the computing fraternity over the last decade. This book presents some critical applications in cloud frameworks along with some innovation design of algorithms and architecture for deployment in cloud environment. It is a valuable source of knowledge for researchers, engineers, practitioners, and graduate and doctoral students working in the field of cloud computing. It will also be useful for faculty members of graduate schools and universities.Comment: Edited Volume published by Intech Publishers, Croatia, June 2017. 138 pages. ISBN 978-953-51-3244-8, Print ISBN 978-953-51-3243-1. Link: https://www.intechopen.com/books/cloud-computing-architecture-and-application

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of economic and pricing theory for resource management in the evolving fifth generation (5G) wireless networks. The 5G wireless networks are envisioned to overcome existing limitations of cellular networks in terms of data rate, capacity, latency, energy efficiency, spectrum efficiency, coverage, reliability, and cost per information transfer. To achieve the goals, the 5G systems will adopt emerging technologies such as massive Multiple-Input Multiple-Output (MIMO), mmWave communications, and dense Heterogeneous Networks (HetNets). However, 5G involves multiple entities and stakeholders that may have different objectives, e.g., high data rate, low latency, utility maximization, and revenue/profit maximization. This poses a number of challenges to resource management designs of 5G. While the traditional solutions may neither efficient nor applicable, economic and pricing models have been recently developed and adopted as useful tools to achieve the objectives. In this paper, we review economic and pricing approaches proposed to address resource management issues in the 5G wireless networks including user association, spectrum allocation, and interference and power management. Furthermore, we present applications of economic and pricing models for wireless caching and mobile data offloading. Finally, we highlight important challenges, open issues and future research directions of applying economic and pricing models to the 5G wireless networks

    Fundamentals of Cluster-Centric Content Placement in Cache-Enabled Device-to-Device Networks

    Full text link
    This paper develops a comprehensive analytical framework with foundations in stochastic geometry to characterize the performance of cluster-centric content placement in a cache-enabled device-to-device (D2D) network. Different from device-centric content placement, cluster-centric placement focuses on placing content in each cluster such that the collective performance of all the devices in each cluster is optimized. Modeling the locations of the devices by a Poisson cluster process, we define and analyze the performance for three general cases: (i)kk-Tx case: receiver of interest is chosen uniformly at random in a cluster and its content of interest is available at the kthk^{th} closest device to the cluster center, (ii) â„“\ell-Rx case: receiver of interest is the â„“th\ell^{th} closest device to the cluster center and its content of interest is available at a device chosen uniformly at random from the same cluster, and (iii) baseline case: the receiver of interest is chosen uniformly at random in a cluster and its content of interest is available at a device chosen independently and uniformly at random from the same cluster. Easy-to-use expressions for the key performance metrics, such as coverage probability and area spectral efficiency (ASE) of the whole network, are derived for all three cases. Our analysis concretely demonstrates significant improvement in the network performance when the device on which content is cached or device requesting content from cache is biased to lie closer to the cluster center compared to baseline case. Based on this insight, we develop and analyze a new generative model for cluster-centric D2D networks that allows to study the effect of intra-cluster interfering devices that are more likely to lie closer to the cluster center.Comment: 16 pages, 10 figures. Submitted to IEEE Transactions on Communication

    Caching Policy Optimization for D2D Communications by Learning User Preference

    Full text link
    Cache-enabled device-to-device (D2D) communications can boost network throughput. By pre-downloading contents to local caches of users, the content requested by a user can be transmitted via D2D links by other users in proximity. Prior works optimize the caching policy at users with the knowledge of content popularity, defined as the probability distribution of request for every file in a library from by all users. However, content popularity can not reflect the interest of each individual user and thus popularity-based caching policy may not fully capture the performance gain introduced by caching. In this paper, we optimize caching policy for cache-enabled D2D by learning user preference, defined as the conditional probability distribution of a user's request for a file given that the user sends a request. We first formulate an optimization problem with given user preference to maximize the offloading probability, which is proved as NP-hard, and then provide a greedy algorithm to find the solution. In order to predict the preference of each individual user, we model the user request behavior by probabilistic latent semantic analysis (pLSA), and then apply expectation maximization (EM) algorithm to estimate the model parameters. Simulation results show that the user preference can be learnt quickly. Compared to the popularity-based caching policy, the offloading gain achieved by the proposed policy can be remarkably improved even with predicted user preference.Comment: Accepted by VTC Spring 201
    • …
    corecore