7,633 research outputs found

    Two High-performance Schemes of Transmit Antenna Selection for Secure Spatial Modulation

    Full text link
    In this paper, a secure spatial modulation (SM) system with artificial noise (AN)-aided is investigated. To achieve higher secrecy rate (SR) in such a system, two high-performance schemes of transmit antenna selection (TAS), leakage-based and maximum secrecy rate (Max-SR), are proposed and a generalized Euclidean distance-optimized antenna selection (EDAS) method is designed. From simulation results and analysis, the four TAS schemes have an decreasing order: Max-SR, leakage-based, generalized EDAS, and random (conventional), in terms of SR performance. However, the proposed Max-SR method requires the exhaustive search to achieve the optimal SR performance, thus its complexity is extremely high as the number of antennas tends to medium and large scale. The proposed leakage-based method approaches the Max-SR method with much lower complexity. Thus, it achieves a good balance between complexity and SR performance. In terms of bit error rate (BER), their performances are in an increasing order: random, leakage-based, Max-SR, and generalized EDAS

    Low-Complexity Linear Precoding for Secure Spatial Modulation

    Full text link
    In this work, we investigate linear precoding for secure spatial modulation. With secure spatial modulation, the achievable secrecy rate does not have an easy-to-compute mathematical expression, and hence, has to be evaluated numerically, which leads to high complexity in the optimal precoder design. To address this issue, an accurate and analytical approximation of the secrecy rate is derived in this work. Using this approximation as the objective function, two low-complexity linear precoding methods based on gradient descend (GD) and successive convex approximation (SCA) are proposed. The GD-based method has much lower complexity but usually converges to a local optimum. On the other hand, the SCA-based method uses semi-definite relaxation to deal with the non-convexity in the precoder optimization problem and achieves near-optimal solution. Compared with the existing GD-based precoder design in the literature that directly uses the exact and numerically evaluated secrecy capacity as the objective function, the two proposed designs have significantly lower complexity. Our SCA-based design even achieves a higher secrecy rate than the existing GD-based design.Comment: 11pages, 8figure

    Two High-Performance Amplitude Beamforming Schemes for Secure Precise Communication and Jamming with Phase Alignment

    Full text link
    To severely weaken the eavesdropper's ability to intercept confidential message (CM), a precise jamming (PJ) idea is proposed by making use of the concept of secure precise wireless transmission (SPWT). Its basic idea is to focus the transmit energy of artificial noise (AN) onto the neighborhood of eavesdropper (Eve) by using random subcarrier selection (RSS), directional modulation, phase alignment (PA), and amplitude beamforming (AB). By doing so, Eve will be seriously interfered with AN. Here, the conventional joint optimization of phase and amplitude is converted into two independent phase and amplitude optimization problems. Considering PJ and SPWT require PA, the joint optimization problem reduces to an amplitude optimization problem. Then, two efficient AB schemes are proposed: leakage and maximizing receive power(Max-RP). With existing equal AB (EAB) as a performance reference, simulation results show that the proposed Max-RP and leakage AB methods perform much better than conventional method in terms of both bit-error-rate (BER) and secrecy rate (SR) at medium and high signal-to-noise ratio regions. The performance difference between the two proposed leakage and Max-RP amplitude beamformers is trivial. Additionally, we also find the fact that all three AB schemes EA, Max-RP, and leakage can form two main peaks of AN and CM around Eve and the desired receiver (Bob), respectively. This is what we call PJ and SPWT

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Reflecting Modulation

    Full text link
    Reconfigurable intelligent surface (RIS) has emerged as a promising technique for future wireless communication networks. How to reliably transmit information in a RIS-based communication system arouses much interest. This paper proposes a reflecting modulation (RM) scheme for RIS-based communications, where both the reflecting patterns and transmit signals can carry information. Depending on that the transmitter and RIS jointly or independently deliver information, RM is further classified into two categories: jointly mapped RM (JRM) and separately mapped RM (SRM). JRM and SRM are naturally superior to existing schemes, because the transmit signal vectors, reflecting patterns, and bit mapping methods of JRM and SRM are more flexibly designed. To enhance transmission reliability, this paper proposes a discrete optimization-based joint signal mapping, shaping, and reflecting (DJMSR) design for JRM and SRM to minimize the bit error rate (BER) with a given transmit signal candidate set and a given reflecting pattern candidate set. To further improve the performance, this paper optimizes multiple reflecting patterns and their associated transmit signal sets in continuous fields for JRM and SRM. Numerical results show that JRM and SRM with the proposed system optimization methods considerably outperform existing schemes in BER.Comment: accepted for publication in IEEE JSAC SI titled Wireless Networks Empowered by Reconfigurable Intelligent Surface

    Symbol-level and Multicast Precoding for Multiuser Multiantenna Downlink: A Survey, Classification and Challenges

    Full text link
    Precoding has been conventionally considered as an effective means of mitigating the interference and efficiently exploiting the available in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block- and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast-/multicast-/broadcast- precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area.Comment: Submitted to IEEE Communications Surveys & Tutorial

    Machine-Learning-based High-resolution DOA Measurement and Robust DM for Hybrid Analog-Digital Massive MIMO Transceiver

    Full text link
    At hybrid analog-digital (HAD) transceiver, an improved HAD rotational invariance techniques (ESPRIT), called I-HAD-ESPRIT, is proposed to measure the direction of arrival (DOA) of desired user, where the phase ambiguity due to HAD structure is addressed successfully. Subsequently, a machine-learning (ML) framework is proposed to improve the precision of measuring DOA. In the training stage, the HAD transceiver works as a receiver and repeatedly measures the values of DOA via I-HAD-ESPRIT to form a slightly large training data set (TDS) of DOA. From TDS, we find that the probability density function (PDF) of DOA measurement error (DOAME) is approximated as a Gaussian distribution by the histogram method in ML. This TDS is used to learn the mean of DOA and the variance of DOAME, which are utilized to infer their values and improve their precisions in the real-time stage. The HAD transceiver rapidly measures the real-time value of DOA some times to form a relatively small real-time set (RTS), which is used to learn the real-time mean and variance of DOA/ DOAME. Then, three weight combiners are proposed to combine the-maximum-likelihood-learning outputs of TDS and RTS. Their weight factors depend intimately on the numbers of elements in TDS and RTS, and signal-to-noise ratios during the two stages. Using the mean and variance of DOA/DOAME, their PDFs can be given directly, and we propose a robust beamformer for directional modulation (DM) transmitter with HAD by fully exploiting the PDF of DOA/DOAME, especially a robust analog beamformer on RF chain. Simulation results show that: 1) The proposed I-HAD-ESPRIT can achieve the HAD CRLB; 2) The proposed ML framework performs much better than the corresponding real-time one without training stage, 3) The proposed robust DM transmitter can perform better than the corresponding non-robust ones in terms of bit error rate and secrecy rate.Comment: 14 pages, 11 figure

    A Novel Compressive Sensing based Enhanced Multiplexing Scheme for MIMO System

    Full text link
    A novel compressive-sensing based signal multiplexing scheme is proposed in this paper to further improve the multiplexing gain for multiple input multiple output (MIMO) system. At the transmitter side, a Gaussian random measurement matrix in compressive sensing is employed before the traditional spatial multiplexing in order to carry more data streams on the available spatial multiplexing streams of the underlying MIMO system. At the receiver side, it is proposed to reformulate the detection of the multiplexing signal into two steps. In the first step, the traditional MIMO equalization can be used to restore the transmitted spatial multiplexing signal of the MIMO system. While in the second step, the standard optimization based detection algorithm assumed in the compressive sensing framework is utilized to restore the CS multiplexing data streams, wherein the exhaustive over-complete dictionary is used to guarantee the sparse representation of the CS multiplexing signal. In order to avoid the excessive complexity, the sub-block based dictionary and the sub-block based CS restoration is proposed. Finally, simulation results are presented to show the feasibility of the proposed CS based enhanced MIMO multiplexing scheme. And our efforts in this paper shed some lights on the great potential in further improving the spatial multiplexing gain for the MIMO system.Comment: 5 pages, 5 figure

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    Efficient Receive Beamformers for Secure Spatial Modulation against a Malicious Full-duplex Attacker with Eavesdropping Ability

    Full text link
    In this paper, we consider a new secure spatial modulation scenario with a full-duplex (FD) malicious attacker Mallory owning eavesdropping capacity, where Mallory works on FD model and transmits a malicious jamming such as artificial noise (AN) to interfere with Bob. To suppress the malicious jamming on Bob from Mallory, a conventional maximum receive power (Max-RP) at Bob is presented firstly. Subsequently, to exploit the colored property of noise plus interference at Bob, a whitening-filter-based Max-RP (Max-WFRP) is proposed with an obvious performance enhancement over Max-RP. To completely remove the malicious jamming from Mallory, a Max-RP with a constraint of forcing the malicious jamming from Mallory to zero at Bob is proposed. To further improve secrecy rate (SR) by removing the ZF contraint (ZFC), the maximum signal-to-jamming-plus-noise ratio (Max-SJNR) is proposed. Our proposed methods have closed-form expressions. From simulation results, the four receive beamforming methods have an increasing order in performance: Max-RP, Max-RP with ZFC and Max-SJNR≈\approxMax-WFRP. Additionally, the latter two harvest a substantial performance gains over Max-RP and Max-RP with ZFC in the low and medium signal-to-noise ratio regions
    • …
    corecore