8,328 research outputs found

    Perfect State Transfer in Laplacian Quantum Walk

    Full text link
    For a graph GG and a related symmetric matrix MM, the continuous-time quantum walk on GG relative to MM is defined as the unitary matrix U(t)=exp(itM)U(t) = \exp(-itM), where tt varies over the reals. Perfect state transfer occurs between vertices uu and vv at time τ\tau if the (u,v)(u,v)-entry of U(τ)U(\tau) has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer: (1) If a nn-vertex graph has perfect state transfer at time τ\tau relative to the Laplacian, then so does its complement if nτn\tau is an integer multiple of 2π2\pi. As a corollary, the double cone over any mm-vertex graph has perfect state transfer relative to the Laplacian if and only if m2(mod4)m \equiv 2 \pmod{4}. This was previously known for a double cone over a clique (S. Bose, A. Casaccino, S. Mancini, S. Severini, Int. J. Quant. Inf., 7:11, 2009). (2) If a graph GG has perfect state transfer at time τ\tau relative to the normalized Laplacian, then so does the weak product G×HG \times H if for any normalized Laplacian eigenvalues λ\lambda of GG and μ\mu of HH, we have μ(λ1)τ\mu(\lambda-1)\tau is an integer multiple of 2π2\pi. As a corollary, a weak product of P3P_{3} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3P_{3} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (C. Godsil, Discrete Math., 312:1, 2011).Comment: 26 pages, 5 figures, 1 tabl

    Perfect state transfer, graph products and equitable partitions

    Full text link
    We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on variants of the double cones [BCMS09,ANOPRT10,ANOPRT09] and the Cartesian graph products (which includes the n-cube) [CDDEKL05]. Some of our results include: (1) If GG is a graph with perfect state transfer at time tGt_{G}, where t_{G}\Spec(G) \subseteq \ZZ\pi, and HH is a circulant with odd eigenvalues, their weak product G×HG \times H has perfect state transfer. Also, if HH is a regular graph with perfect state transfer at time tHt_{H} and GG is a graph where t_{H}|V_{H}|\Spec(G) \subseteq 2\ZZ\pi, their lexicographic product G[H]G[H] has perfect state transfer. (2) The double cone K2+G\overline{K}_{2} + G on any connected graph GG, has perfect state transfer if the weights of the cone edges are proportional to the Perron eigenvector of GG. This generalizes results for double cone on regular graphs studied in [BCMS09,ANOPRT10,ANOPRT09]. (3) For an infinite family \GG of regular graphs, there is a circulant connection so the graph K_{1}+\GG\circ\GG+K_{1} has perfect state transfer. In contrast, no perfect state transfer exists if a complete bipartite connection is used (even in the presence of weights) [ANOPRT09]. We also describe a generalization of the path collapsing argument [CCDFGS03,CDDEKL05], which reduces questions about perfect state transfer to simpler (weighted) multigraphs, for graphs with equitable distance partitions.Comment: 18 pages, 6 figure
    corecore