413 research outputs found
Invisibility and Cloaking: Origins, Present, and Future Perspectives
The development of metamaterials, i.e., artificially structured materials that interact with waves in unconventional ways, has revolutionized our ability to manipulate the propagation of electromagnetic waves and their interaction with matter. One of the most exciting applications of metamaterial science is related to the possibility of totally suppressing the scattering of an object using an invisibility cloak. Here, we review the available methods to make an object undetectable to electromagnetic waves, and we highlight the outstanding challenges that need to be addressed in order to obtain a fully functional coating capable of suppressing the total scattering of an object. Our outlook discusses how, while passive linear cloaks are fundamentally limited in terms of bandwidth of operation and overall scattering suppression, active and/or nonlinear cloaks hold the promise to overcome, at least partially, some of these limitations.AFOSR Award FA9550-13-1-0204NSF CAREER Award ECCS-0953311DTRA YIP Award HDTRA1-12-1-0022Electrical and Computer Engineerin
Polarization-independent broadband bidirectional optical cloaking using a new type of inverse scattering approach
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Since the advent of transformation optics a decade ago [1], the ability to achieve optical cloaking has become a matter of practical realization. However, so far extreme material requirements and large device areas have significantly posed an obstacle to realize compact cloaking schemes that are fully functional. Here, by taking a different approach and by following our recently developed general theorem to control the scattering behaviour of an arbitrary object on a specific demand [2], we show that nearly perfect bidirectional optical cloaking effect can be generated for any type of object with a given shape and size. Contrary to previous approaches, we reveal that such a method is always able to produce local refractive indices larger than one and that neither gain nor lossy materials are required. Furthermore, by means of numerical calculations, we demonstrate a highly tunable broad operational bandwidth of 550 nm (covering 650-1200 nm interval) and an angular aperture of 36° for both directions and polarizations. With these unprecedented features, we expect that the present work will hold a great potential to enable a new class of optical cloaking structures that will find applications particularly in communication systems, defence industry and in other related fields.Peer ReviewedPostprint (author's final draft
Experimental realization of a broadband illusion optics device
We experimentally demonstrate the first metamaterial "illusion optics" device
- an "invisible gateway" by using a transmission-line medium. The device
contains an open channel that can block electromagnetic waves at a particular
frequency range. We also demonstrate that such a device can work in a broad
frequency range.Comment: 9 pages, 5 figure
A Review of Metamaterial Invisibility Cloaks
The exciting features of metamaterial in conjunction with transformation optics leads to various applications in the microwave regime with such examples as invisible cloak, frequency selective surfaces (FSS), radomes, etc. The concept of electromagnetic invisibility is very much important in aerospace platform. Hence to study the feasibility of implementation of this concept for stealth, an extensive literature survey of metamaterial cloaks has been carried out and reported in this paper along with the basic concept of cloaking. To make the review more effective, the technical papers are classified into three broad sections viz. mathematical modeling, design and simulations, and fabrications and experimental demonstration. Further the design and simulation is focused on different techniques implemented such as finite difference time domain (FDTD), finite element method (FEM), finite integration technique (FIT), inductor-capacitor representation of metamaterial (LC MTM) etc. The review also reports the methods implemented for analysis of metamaterial cloaks with possibility of application to the specific frequency rang
Scattering Theory and -Symmetry
We outline a global approach to scattering theory in one dimension that
allows for the description of a large class of scattering systems and their
-, -, and -symmetries. In
particular, we review various relevant concepts such as Jost solutions,
transfer and scattering matrices, reciprocity principle, unidirectional
reflection and invisibility, and spectral singularities. We discuss in some
detail the mathematical conditions that imply or forbid reciprocal
transmission, reciprocal reflection, and the presence of spectral singularities
and their time-reversal. We also derive generalized unitarity relations for
time-reversal-invariant and -symmetric scattering
systems, and explore the consequences of breaking them. The results reported
here apply to the scattering systems defined by a real or complex local
potential as well as those determined by energy-dependent potentials, nonlocal
potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page
- …
