149,670 research outputs found
The random geometry of equilibrium phases
This is a (long) survey about applications of percolation theory in
equilibrium statistical mechanics. The chapters are as follows:
1. Introduction
2. Equilibrium phases
3. Some models
4. Coupling and stochastic domination
5. Percolation
6. Random-cluster representations
7. Uniqueness and exponential mixing from non-percolation
8. Phase transition and percolation
9. Random interactions
10. Continuum modelsComment: 118 pages. Addresses: [email protected]
http://www.mathematik.uni-muenchen.de/~georgii.html [email protected]
http://www.math.chalmers.se/~olleh [email protected]
On the scaling limits of planar percolation
We prove Tsirelson's conjecture that any scaling limit of the critical planar
percolation is a black noise. Our theorems apply to a number of percolation
models, including site percolation on the triangular grid and any subsequential
scaling limit of bond percolation on the square grid. We also suggest a natural
construction for the scaling limit of planar percolation, and more generally of
any discrete planar model describing connectivity properties.Comment: With an Appendix by Christophe Garban. Published in at
http://dx.doi.org/10.1214/11-AOP659 the Annals of Probability
(http://www.imstat.org/aop/) by the Institute of Mathematical Statistics
(http://www.imstat.org
- …
