316,900 research outputs found

    Computational models of the development of perceptual expertise

    Get PDF
    In a recent article, Palmeri, Wong and Gauthier have argued that computational models may help direct hypotheses about the development of perceptual expertise. They support their claim by an analysis of models from the object-recognition and perceptual-categorization literatures. Surprisingly, however, they do not consider any computational models from traditional research into expertise, essentially the research deriving from Chase and Simon’s chunking theory, which itself was influenced by De Groot’s study of chessplayers. This is unfortunate, as a series of computational models based on perceptual chunking have explained a substantial number of phenomena related to expert behaviour and provide mechanisms that directly address the question of perceptual expertise

    A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia

    Get PDF
    Normal perception involves experiencing objects within perceptual scenes as real, as existing in the world. This property of “perceptual presence” has motivated “sensorimotor theories” which understand perception to involve the mastery of sensorimotor contingencies. However, the mechanistic basis of sensorimotor contingencies and their mastery has remained unclear. Sensorimotor theory also struggles to explain instances of perception, such as synesthesia, that appear to lack perceptual presence and for which relevant sensorimotor contingencies are difficult to identify. On alternative “predictive processing” theories, perceptual content emerges from probabilistic inference on the external causes of sensory signals, however, this view has addressed neither the problem of perceptual presence nor synesthesia. Here, I describe a theory of predictive perception of sensorimotor contingencies which (1) accounts for perceptual presence in normal perception, as well as its absence in synesthesia, and (2) operationalizes the notion of sensorimotor contingencies and their mastery. The core idea is that generative models underlying perception incorporate explicitly counterfactual elements related to how sensory inputs would change on the basis of a broad repertoire of possible actions, even if those actions are not performed. These “counterfactually-rich” generative models encode sensorimotor contingencies related to repertoires of sensorimotor dependencies, with counterfactual richness determining the degree of perceptual presence associated with a stimulus. While the generative models underlying normal perception are typically counterfactually rich (reflecting a large repertoire of possible sensorimotor dependencies), those underlying synesthetic concurrents are hypothesized to be counterfactually poor. In addition to accounting for the phenomenology of synesthesia, the theory naturally accommodates phenomenological differences between a range of experiential states including dreaming, hallucination, and the like. It may also lead to a new view of the (in)determinacy of normal perception

    Investigating computational models of perceptual attack time

    Get PDF
    The perceptual attack time (PAT) is the compensation for differing attack components of sounds, in the case of seeking a perceptually isochronous presentation of sounds. It has applications in scheduling and is related to, but not necessarily the same as, the moment of perceptual onset. This paper describes a computational investigation of PAT over a set of 25 synthesised stimuli, and a larger database of 100 sounds equally divided into synthesised and ecological. Ground truth PATs for modeling were obtained by the alternating presentation paradigm, where subjects adjusted the relative start time of a reference click and the sound to be judged. Whilst fitting experimental data from the 25 sound set was plausible, difficulties with existing models were found in the case of the larger test set. A pragmatic solution was obtained using a neural net architecture. In general, learnt schema of sound classification may be implicated in resolving the multiple detection cues evoked by complex sounds

    Spiking Dynamics during Perceptual Grouping in the Laminar Circuits of Visual Cortex

    Full text link
    Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001); Defense Advanced Research Project Agency (HR001-09-C-0011

    Stochastic accumulation of feature information in perception and memory

    Get PDF
    It is now well established that the time course of perceptual processing influences the first second or so of performance in a wide variety of cognitive tasks. Over the last20 years, there has been a shift from modeling the speed at which a display is processed, to modeling the speed at which different features of the display are perceived and formalizing how this perceptual information is used in decision making. The first of these models(Lamberts, 1995) was implemented to fit the time course of performance in a speeded perceptual categorization task and assumed a simple stochastic accumulation of feature information. Subsequently, similar approaches have been used to model performance in a range of cognitive tasks including identification, absolute identification, perceptual matching, recognition, visual search, and word processing, again assuming a simple stochastic accumulation of feature information from both the stimulus and representations held in memory. These models are typically fit to data from signal-to-respond experiments whereby the effects of stimulus exposure duration on performance are examined, but response times (RTs) and RT distributions have also been modeled. In this article, we review this approach and explore the insights it has provided about the interplay between perceptual processing, memory retrieval, and decision making in a variety of tasks. In so doing, we highlight how such approaches can continue to usefully contribute to our understanding of cognition

    Time and information in perceptual adaptation to speech

    Get PDF
    Presubmission manuscript and supplementary files (stimuli, stimulus presentation code, data, data analysis code).Perceptual adaptation to a talker enables listeners to efficiently resolve the many-to-many mapping between variable speech acoustics and abstract linguistic representations. However, models of speech perception have not delved into the variety or the quantity of information necessary for successful adaptation, nor how adaptation unfolds over time. In three experiments using speeded classification of spoken words, we explored how the quantity (duration), quality (phonetic detail), and temporal continuity of talker-specific context contribute to facilitating perceptual adaptation to speech. In single- and mixed-talker conditions, listeners identified phonetically-confusable target words in isolation or preceded by carrier phrases of varying lengths and phonetic content, spoken by the same talker as the target word. Word identification was always slower in mixed-talker conditions than single-talker ones. However, interference from talker variability decreased as the duration of preceding speech increased but was not affected by the amount of preceding talker-specific phonetic information. Furthermore, efficiency gains from adaptation depended on temporal continuity between preceding speech and the target word. These results suggest that perceptual adaptation to speech may be understood via models of auditory streaming, where perceptual continuity of an auditory object (e.g., a talker) facilitates allocation of attentional resources, resulting in more efficient perceptual processing.NIH NIDCD (R03DC014045

    Perceptual Abstraction for Robotic Cognitive Development

    Get PDF
    We are concerned with the design of a developmental robot that learns from scratch simple models about itself and its surroundings. A particular attention is given to perceptual abstraction from high-dimensional sensors

    Linking Visual Cortex to Visual Perception: An Alternative to the Gestalt Bubble

    Full text link
    Lehar's lively discussion builds on a critique of neural models of vision that is incorrect in its general and specific claims. He espouses a Gestalt perceptual approach, rather than one consistent with the "objective neurophysiological state of the visual system" (p. 1). Contemporary vision models realize his perceptual goals and also quantitatively explain neurophysiological and anatomical data

    Perception of Motion and Architectural Form: Computational Relationships between Optical Flow and Perspective

    Full text link
    Perceptual geometry refers to the interdisciplinary research whose objectives focuses on study of geometry from the perspective of visual perception, and in turn, applies such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form, space and motion are among fundamental problems in vision science. In cognitive and computational models of human perception, the theories for modeling motion are treated separately from models for perception of form.Comment: 10 pages, 13 figures, submitted and accepted in DoCEIS'2012 Conference: http://www.uninova.pt/doceis/doceis12/home/home.ph
    corecore