5,866 research outputs found

    Linking Visual Development and Learning to Information Processing: Preattentive and Attentive Brain Dynamics

    Full text link
    National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657

    Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making

    Full text link
    When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    How does the Cerebral Cortex Work? Learning, Attention, and Grouping by the Laminar Circuits of Visual Cortex

    Full text link
    The organization of neocortex into layers is one of its most salient anatomical features. These layers include circuits that form functional columns in cortical maps. A major unsolved problem concerns how bottom-up, top-down, and horizontal interactions are organized within cortical layers to generate adaptive behaviors. This article models how these interactions help visual co1tex to realize: (I) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency; National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Linking the Laminar Circuits of Visual Cortex to Visual Perception

    Full text link
    A detailed neural model is being developed of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention, and develop and learn in a stable way. The model clarifies how preattentive and attentive perceptual mechanisms are linked within these laminar circuits, notably how bottom-up, top-down, and horizontal cortical connections interact. Laminar circuits allow the responses of visual cortical neurons to be influenced, not only by the stimuli within their classical receptive fields, but also by stimuli in the extra-classical surround. Such context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. Attentional enhancement can selectively propagate along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. Model mechanisms clarify how intracortical and intercortical feedback help to stabilize cortical development and learning. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    The Complementary Brain: A Unifying View of Brain Specialization and Modularity

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-I-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-I-0657

    Context-Sensitive Binding by the Laminar Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation Contrast

    Full text link
    A detailed neural model is presented of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention. The model proposes how specific laminar circuits allow the responses of visual cortical neurons to be determined not only by the stimuli within their classical receptive fields, but also to be strongly influenced by stimuli in the extra-classical surround. This context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. We show how interactions of feedforward, feedback and horizontal circuitry can implement several types of contextual processing simultaneously, using shared laminar circuits. In particular, we present computer simulations which suggest how top-down attention and preattentive perceptual grouping, two processes that are fundamental for visual binding, can interact, with attentional enhancement selectively propagating along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. These simulations also illustrate how attention may have a stronger facilitatory effect on low contrast than on high contrast stimuli, and how pop-out from orientation contrast may occur. The specific functional roles which the model proposes for the cortical layers allow several testable neurophysiological predictions to be made. The results presented here simulate only the boundary grouping system of adult cortical architecture. However we also discuss how this model contributes to a larger neural theory of vision which suggests how intracortical and intercortical feedback help to stabilize development and learning within these cortical circuits. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information. Model circuits are capable of synchronizing quickly, but context-sensitive persistence of previous events can influence how synchrony develops. Although these results focus on how the interblob cortical processing stream controls boundary grouping and attention, related modeling of the blob cortical processing stream suggests how visible surfaces are formed, and modeling of the motion stream suggests how transient responses to scenic changes can control long-range apparent motion and also attract spatial attention.Defense Advanced Research Projects agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); ONR (N00014-92-J-1309, N00014-95-1-0657

    Laminar Cortical Dynamics of Visual Form and Motion Interactions During Coherent Object Motion Perception

    Full text link
    How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.Air Force Office of Scientific Research (F49620-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (BCS-02-35398, SBE-0354378); Office of Naval Research (N00014-95-1-0409, N00014-01-1-0624
    • …
    corecore