1,052 research outputs found

    A Reverse Hierarchy Model for Predicting Eye Fixations

    Full text link
    A number of psychological and physiological evidences suggest that early visual attention works in a coarse-to-fine way, which lays a basis for the reverse hierarchy theory (RHT). This theory states that attention propagates from the top level of the visual hierarchy that processes gist and abstract information of input, to the bottom level that processes local details. Inspired by the theory, we develop a computational model for saliency detection in images. First, the original image is downsampled to different scales to constitute a pyramid. Then, saliency on each layer is obtained by image super-resolution reconstruction from the layer above, which is defined as unpredictability from this coarse-to-fine reconstruction. Finally, saliency on each layer of the pyramid is fused into stochastic fixations through a probabilistic model, where attention initiates from the top layer and propagates downward through the pyramid. Extensive experiments on two standard eye-tracking datasets show that the proposed method can achieve competitive results with state-of-the-art models.Comment: CVPR 2014, 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). CVPR 201

    I'm sorry to say, but your understanding of image processing fundamentals is absolutely wrong

    Full text link
    The ongoing discussion whether modern vision systems have to be viewed as visually-enabled cognitive systems or cognitively-enabled vision systems is groundless, because perceptual and cognitive faculties of vision are separate components of human (and consequently, artificial) information processing system modeling.Comment: To be published as chapter 5 in "Frontiers in Brain, Vision and AI", I-TECH Publisher, Viena, 200

    An Improved Infrared/Visible Fusion for Astronomical Images

    Get PDF
    An undecimated dual tree complex wavelet transform (UDTCWT) based fusion scheme for astronomical visible/IR images is developed. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property. Local standard deviation and distance transforms are used to extract useful information (especially small objects). Simulation results compared with the state-of-the-art fusion techniques illustrate the superiority of proposed scheme in terms of accuracy for most of the cases

    Real-Time Anisotropic Diffusion using Space-Variant Vision

    Full text link
    Many computer and robot vision applications require multi-scale image analysis. Classically, this has been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear diffusion equation on an infinite domain, as the Gaussian is the Green's function of such a system (Koenderink, 1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic diffusion described by a nonlinear partial differential equation (PDF). The use of anisotropic diffusion with a conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges, while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic diffusion equation requires the numerical integration of a nonlinear PDF which is a costly process when carried out on a fixed mesh such as a typical image. In this paper we show that the complex log transformation, variants of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be integrated at exponentially enhanced rates due to the non-uniform mesh spacing inherent in the log domain. The enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a seed increase of between two and three orders of magnitude, providing a means of performing real-time image enhancement using anisotropic diffusion.Office of Naval Research (N00014-95-I-0409

    A bag of words description scheme for image quality assessment

    Get PDF
    Every day millions of images are obtained, processed, compressed, saved, transmitted and reproduced. All these operations can cause distortions that affect their quality. The quality of these images should be measured subjectively. However, that brings the disadvantage of achieving a considerable number of tests with individuals requested to provide a statistical analysis of an image’s perceptual quality. Several objective metrics have been developed, that try to model the human perception of quality. However, in most applications the representation of human quality perception given by these metrics is far from the desired representation. Therefore, this work proposes the usage of machine learning models that allow for a better approximation. In this work, definitions for image and quality are given and some of the difficulties of the study of image quality are mentioned. Moreover, three metrics are initially explained. One uses the image’s original quality has a reference (SSIM) while the other two are no reference (BRISQUE and QAC). A comparison is made, showing a large discrepancy of values between the two kinds of metrics. The database that is used for the tests is TID2013. This database was chosen due to its dimension and by the fact of considering a large number of distortions. A study of each type of distortion in this database is made. Furthermore, some concepts of machine learning are introduced along with algorithms relevant in the context of this dissertation, notably, K-means, KNN and SVM. Description aggregator algorithms like “bag of words” and “fisher-vectors” are also mentioned. This dissertation studies a new model that combines machine learning and a quality metric for quality estimation. This model is based on the division of images in cells, where a specific metric is computed. With this division, it is possible to obtain local quality descriptors that will be aggregated using “bag of words”. A SVM with an RBF kernel is trained and tested on the same database and the results of the model are evaluated using cross-validation. The results are analysed using Pearson, Spearman and Kendall correlations and the RMSE to evaluate the representation of the model when compared with the subjective results. The model improves the results of the metric that was used and shows a new path to apply machine learning for quality evaluation.No nosso dia-a-dia as imagens são obtidas, processadas, comprimidas, guardadas, transmitidas e reproduzidas. Em qualquer destas operações podem ocorrer distorções que prejudicam a sua qualidade. A qualidade destas imagens pode ser medida de forma subjectiva, o que tem a desvantagem de serem necessários vários testes, a um número considerável de indivíduos para ser feita uma análise estatística da qualidade perceptual de uma imagem. Foram desenvolvidas várias métricas objectivas, que de alguma forma tentam modelar a percepção humana de qualidade. Todavia, em muitas aplicações a representação de percepção de qualidade humana dada por estas métricas fica aquém do desejável, razão porque se propõe neste trabalho usar modelos de reconhecimento de padrões que permitam uma maior aproximação. Neste trabalho, são dadas definições para imagem e qualidade e algumas das dificuldades do estudo da qualidade de imagem são referidas. É referida a importância da qualidade de imagem como ramo de estudo, e são estudadas diversas métricas de qualidade. São explicadas três métricas, uma delas que usa a qualidade original como referência (SSIM) e duas métricas sem referência (BRISQUE e QAC). Uma comparação é feita entre elas, mostrando- – se uma grande discrepância de valores entre os dois tipos de métricas. Para os testes feitos é usada a base de dados TID2013, que é muitas vezes considerada para estudos de qualidade de métricas devido à sua dimensão e ao facto de considerar um grande número de distorções. Neste trabalho também se fez um estudo dos tipos de distorção incluidos nesta base de dados e como é que eles são simulados. São introduzidos também alguns conceitos teóricos de reconhecimento de padrões e alguns algoritmos relevantes no contexto da dissertação, são descritos como o K-means, KNN e as SVMs. Algoritmos de agregação de descritores como o “bag of words” e o “fisher-vectors” também são referidos. Esta dissertação adiciona métodos de reconhecimento de padrões a métricas objectivas de qua– lidade de imagem. Uma nova técnica é proposta, baseada na divisão de imagens em células, nas quais uma métrica será calculada. Esta divisão permite obter descritores locais de qualidade que serão agregados usando “bag of words”. Uma SVM com kernel RBF é treinada e testada na mesma base de dados e os resultados do modelo são mostrados usando cross-validation. Os resultados são analisados usando as correlações de Pearson, Spearman e Kendall e o RMSE que permitem avaliar a proximidade entre a métrica desenvolvida e os resultados subjectivos. Este modelo melhora os resultados obtidos com a métrica usada e demonstra uma nova forma de aplicar modelos de reconhecimento de padrões ao estudo de avaliação de qualidade

    DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction

    Get PDF
    Compressed Sensing Magnetic Resonance Imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging based fast MRI, which utilises multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training datasets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN) is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilise our U-Net based generator, which provides an endto-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CSMRI reconstruction methods and newly investigated deep learning approaches. Compared to these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing
    • …
    corecore