2 research outputs found

    Audio Signal Processing Using Time-Frequency Approaches: Coding, Classification, Fingerprinting, and Watermarking

    Get PDF
    Audio signals are information rich nonstationary signals that play an important role in our day-to-day communication, perception of environment, and entertainment. Due to its non-stationary nature, time- or frequency-only approaches are inadequate in analyzing these signals. A joint time-frequency (TF) approach would be a better choice to efficiently process these signals. In this digital era, compression, intelligent indexing for content-based retrieval, classification, and protection of digital audio content are few of the areas that encapsulate a majority of the audio signal processing applications. In this paper, we present a comprehensive array of TF methodologies that successfully address applications in all of the above mentioned areas. A TF-based audio coding scheme with novel psychoacoustics model, music classification, audio classification of environmental sounds, audio fingerprinting, and audio watermarking will be presented to demonstrate the advantages of using time-frequency approaches in analyzing and extracting information from audio signals.</p

    Perceptual Coding of Audio Signals Using Adaptive Time-Frequency Transform

    No full text
    Wide band digital audio signals have a very high data-rate associated with them due to their complex nature and demand for high-quality reproduction. Although recent technological advancements have significantly reduced the cost of bandwidth and miniaturized storage facilities, the rapid increase in the volume of digital audio content constantly compels the need for better compression algorithms. Over the years various perceptually lossless compression techniques have been introduced, and transform-based compression techniques have made a significant impact in recent years. In this paper, we propose one such transform-based compression technique, where the joint time-frequency (TF) properties of the nonstationary nature of the audio signals were exploited in creating a compact energy representation of the signal in fewer coefficients. The decomposition coefficients were processed and perceptually filtered to retain only the relevant coefficients. Perceptual filtering (psychoacoustics) was applied in a novel way by analyzing and performing TF specific psychoacoustics experiments. An added advantage of the proposed technique is that, due to its signal adaptive nature, it does not need predetermined segmentation of audio signals for processing. Eight stereo audio signal samples of different varieties were used in the study. Subjective (mean opinion score—MOS) listening tests were performed and the subjective difference grades (SDG) were used to compare the performance of the proposed coder with MP3, AAC, and HE-AAC encoders. Compression ratios in the range of 8 to 40 were achieved by the proposed technique with subjective difference grades (SDG) ranging from –0.53 to –2.27
    corecore