1,431,300 research outputs found
Parking and the visual perception of space
Using measured data we demonstrate that there is an amazing correspondence
among the statistical properties of spacings between parked cars and the
distances between birds perching on a power line. We show that this observation
is easily explained by the fact that birds and human use the same mechanism of
distance estimation. We give a simple mathematical model of this phenomenon and
prove its validity using measured data
Perception of Motion and Architectural Form: Computational Relationships between Optical Flow and Perspective
Perceptual geometry refers to the interdisciplinary research whose objectives
focuses on study of geometry from the perspective of visual perception, and in
turn, applies such geometric findings to the ecological study of vision.
Perceptual geometry attempts to answer fundamental questions in perception of
form and representation of space through synthesis of cognitive and biological
theories of visual perception with geometric theories of the physical world.
Perception of form, space and motion are among fundamental problems in vision
science. In cognitive and computational models of human perception, the
theories for modeling motion are treated separately from models for perception
of form.Comment: 10 pages, 13 figures, submitted and accepted in DoCEIS'2012
Conference: http://www.uninova.pt/doceis/doceis12/home/home.ph
Perception of the Body in Space: Mechanisms
The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again
Vestibular modulation of spatial perception
Vestibular inputs make a key contribution to the own sense of spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall left to right shift in bisection bias as a function of viewing distance: suggestive of a leftward bias in near space, and a rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, producing instead a bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment
"Sitting too close to the screen can be bad for your ears": A study of audio-visual location discrepancy detection under different visual projections
In this work, we look at the perception of event locality under conditions of disparate audio and visual cues. We address an aspect of the so called “ventriloquism effect” relevant for multi-media designers; namely, how auditory perception of event locality is influenced by the size and scale of the accompanying visual projection of those events. We observed that recalibration of the visual axes of an audio-visual animation (by resizing and zooming) exerts a recalibrating influence on the auditory space perception. In particular, sensitivity to audio-visual discrepancies (between a centrally located visual stimuli and laterally displaced audio cue) increases near the edge of the screen on which the visual cue is displayed. In other words,discrepancy detection thresholds are not fixed for a particular pair of stimuli, but are influenced by the size of the display space. Moreover, the discrepancy thresholds are influenced by scale as well as size. That is, the boundary of auditory space perception is not rigidly fixed on the boundaries of the screen; it also depends on the spatial relationship depicted. For example,the ventriloquism effect will break down within the boundaries of a large screen if zooming is used to exaggerate the proximity of the audience to the events. The latter effect appears to be much weaker than the former
Effects of White Space on Consumer Perceptions of Value in E-Commerce
As e-commerce becomes an increasingly large industry, questions remain about how the isolated effects of design elements on websites influence consumer perceptions and purchasing behavior. This study used a quantitative approach to measuring the effect of a ubiquitous element of design, white space, on the perception of the monetary value of individual items. White space is a key component of design and website usability, yet it has been shown to be related to the perception of luxury. Little is known about the direct relationship between manipulation of white space and the outcomes on consumer perceptions of value in an e-commerce context. This study found no significant difference between two levels of total white space area (large vs. small) measured by participants\u27 perceived cost of items (chairs). In contrast, while holding total white space constant, the effect of white space distance between images was significant for males but not for females. Additionally, no significant relationship between gender and frequency of online shopping behavior was found, χ2(1) = 3.19, p = .07, ϕ = .17. Gender and amount of time spent per month online were significantly related, χ2(1) = 6.21, p = .013, ϕ = .24
- …
