2,023 research outputs found

    Evaluating Multimodal Driver Displays of Varying Urgency

    Get PDF
    Previous studies have evaluated Audio, Visual and Tactile warnings for drivers, highlighting the importance of conveying the appropriate level of urgency through the signals. However, these modalities have never been combined exhaustively with different urgency levels and tested while using a driving simulator. This paper describes two experiments investigating all multimodal combinations of such warnings along three different levels of designed urgency. The warnings were first evaluated in terms of perceived urgency and perceived annoyance in the context of a driving simulator. The results showed that the perceived urgency matched the designed urgency of the warnings. More urgent warnings were also rated as more annoying but the effect of annoyance was lower compared to urgency. The warnings were then tested for recognition time when presented during a simulated driving task. It was found that warnings of high urgency induced quicker and more accurate responses than warnings of medium and of low urgency. In both studies, the number of modalities used in warnings (one, two or three) affected both subjective and objective responses. More modalities led to higher ratings of urgency and annoyance, with annoyance having a lower effect compared to urgency. More modalities also led to quicker responses. These results provide implications for multimodal warning design and reveal how modalities and modality combinations can influence participant responses during a simulated driving task

    An Exploration of Tactile Warning Design Based on Perceived Urgency

    Get PDF
    When there is information overload on the visual modality, another system of warnings must be adopted to prevent potential risks—tactile warning systems present a viable alternative. Building on work on design approaches for auditory warning systems that match appropriate warnings to the severity of risk, this thesis presents an approach to design tactile warnings based on perceived urgency. To do this, I use a subjective rating technique. I performed three experiments to demonstrate this approach. Our research approach uses subjective rating technique to evaluate perceived urgency. Three experiments were conducted to design tactile warnings with a tactile interface developed by attaching a grid of tactors on a vest. In Experiment 1 and 2, I evaluated perceived urgency of several warning designs with three important parameters of tactile warnings with subjective rating. In Experiment 3 I examined one warning design in the context of flight simulation. The results of Experiment 1 and 2 showed that participants can discriminate between all levels of perceived urgency from most warning parameters. In Experiment 3, the results showed that selected warning design was correctly mapped with the severity of most events. The findings suggest that tactile warnings based on perceived urgency can be a possible approach, but further studies will be required to evaluate different parameters of tactile warnings

    Forward collision warning modality and content: a summary of human factors studies

    Full text link
    The report summarizes a nonexhaustive sample of 17 studies covering 27 experiments on human factors and forward-collision warnings. Subject samples ranged from 11 to 260 (median=30). Twenty-three experiments were conducted using driving simulators; 4 were on test tracks. Typically subjects followed a lead vehicle that braked abruptly, triggering audio, visual, tactile, or combined warnings. Response/reaction time was reported as a dependent measure in 18 of the 27 experiments, the number of crashes in 8, distance headway (gap) in 3, perceived urgency in 7 (both by the same authors), perceived annoyance in 11, and probability of warning recall in 1. Providing a warning leads to a more desired outcome. Response/reaction times were briefer in 9 of the 9 studies that considered this and all 4 of the studies that examined crashes reported fewer crashes with warnings. Warnings 4 to 10 dB above the background level led to the best performance, but only one study systematically varied warning intensity. Of the combinations explored, multimodal warnings tended to lead to better performance than unimodal warnings, though none of them considered seat-belt-pretensioner activation, an effective way to reduce crash injuries. Studies could be improved by the use of consistent crash scenarios, defined measures, predictions of performance, and including older drivers in test samples.Nissan Technical Center North Americahttp://deepblue.lib.umich.edu/bitstream/2027.42/134038/1/103247.pdf-1Description of 103247.pdf : Final repor

    Vibrotactile Stimuli Parameters on Detection Reaction Times

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Signaling system designers are leveraging the tactile modality to create alarms, alerts, and warnings. The purpose of this research was to map detection reaction times (RT) toward tactile stimuli with various parameter manipulations. We employed a 3 (wave form) × 3 (inter-pulse interval) × 3 (envelope) within subjects design. The dependent measure was detection RT. Twenty participants (15 female) responded to 270 tactile stimuli. ANOVAs indicated three two-way interactions. Generally, shorter inter-pulse intervals led to quicker RT and the fade-in envelope led to longer RT, when compared to envelopes starting at the maximum amplitude. Square and sinusoidal waves tended to prompt quicker RT than the noise wave. The strength of these relationships, however, depended upon the presence of the other parameters. Designers can use the results of this study to effectively and appropriately assign tactile parameter manipulations to signals that require varied levels of response urgencies

    Informative Collision Warnings: Effect of Modality and Driver Age

    Get PDF
    Research has revealed that when drivers are presented with an informative tactile collision warning, they are able to produce faster braking reaction times (BRTs) which may potentially reduce the likelihood and severity of rear-end collisions. To expand on this research, we investigated the effectiveness of unimodal (tactile) and multisensory (audiotactile) informative collision warnings for younger and older drivers. In line with our previous results, driver BRTs were significantly faster when they were presented with an informative signal as compared to a non-informative signal and a control condition in which no warnings were presented. The results also revealed that the unimodal informative warning was just as effective as the multisensory warning. Intriguingly, older drivers exhibited faster BRTs than younger drivers, and were significantly faster following the presentation of multisensory warning signals. Finally, this study identifies the need to compare new configurations of informative tactile collision warning signals

    In-Vehicle Human Machine Interface: Investigating the Effects of Tactile Displays on Information Presentation in Automated Vehicles

    Get PDF
    Background: Semi-autonomous vehicles still require human drivers to take over when the automated systems can no longer perform the driving task. Objective: The goal of this study was to design and test the effects of six meaningful tactile signal types, representing six driving scenarios (i.e., navigation, speed, surrounding vehicles, over the speed limit, headway reductions, and pedestrian status) respectively, and two pattern durations (lower and higher urgencies), on drivers\u27 perception and performance during automated driving. Methods: Sixteen volunteers participated in an experiment utilizing a medium-fidelity driving simulator presenting vibrotactile signals via 20 tactors embedded in the seat back, pan, and belt. Participants completed four separate driving sessions with 30 tactile signals presented randomly throughout each drive. Reaction times (RT), interpretation accuracy, and subjective ratings were measured. Results: Results illustrated shorter RTs and higher intuitive ratings for higher urgency patterns than lower urgency patterns. Pedestrian status and headway reduction signals were associated with shorter RTs and increased confidence ratings, compared to other tactile signal types. Lastly, among six tactile signals, surrounding vehicle and navigation signal types had the highest interpretation accuracy. Conclusion: These results will be used as preliminary data for future studies that aim to investigate the effects of meaningful tactile displays on automated vehicle takeover performance in complex situations (e.g., urban areas) where actual takeovers are required. The findings of this study will inform the design of next-generation in-vehicle human-machine interfaces

    Dynamic vibrotactile signals for forward collision avoidance warning systems

    Get PDF
    OBJECTIVE: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. BACKGROUND: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. METHOD: The effectiveness of various vibrotactile warning signals was assessed using a simulated car-following task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). RESULTS: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a looming-intensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). CONCLUSION: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. APPLICATION: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system

    Buzz or Beep? How Mode of Alert Influences Driver Takeover Following Automation Failure

    Get PDF
    abstract: Highly automated vehicles require drivers to remain aware enough to takeover during critical events. Driver distraction is a key factor that prevents drivers from reacting adequately, and thus there is need for an alert to help drivers regain situational awareness and be able to act quickly and successfully should a critical event arise. This study examines two aspects of alerts that could help facilitate driver takeover: mode (auditory and tactile) and direction (towards and away). Auditory alerts appear to be somewhat more effective than tactile alerts, though both modes produce significantly faster reaction times than no alert. Alerts moving towards the driver also appear to be more effective than alerts moving away from the driver. Future research should examine how multimodal alerts differ from single mode, and see if higher fidelity alerts influence takeover times.Dissertation/ThesisMasters Thesis Human Systems Engineering 201

    Effectiveness of Bimodal Versus Unimodal Alerts for Distracted Drivers

    Get PDF
    Twenty-two participants drove a simulated vehicle while engaged in a low or high working memory load task and responded to signals presented in auditory, visual and tactile modalities or their bimodal combinations by pressing on the brake. Signals were designed to be of low or high urgency in both unimodal and bimodal combinations. High urgency and bimodal signals were responded to faster than their low urgency and unimodal counterparts. Fewer bimodal signals were missed overall. This bimodal advantage was particularly significant relative to unimodal signals of low urgency in the high working memory load condition. Together these results indicate that hazard mapping can most effectively be obtained by designing with both the perceived urgency level of the signal and modal plurality in mind
    • …
    corecore