3 research outputs found

    Pedestrian detection and tracking using stereo vision techniques

    Get PDF
    Automated pedestrian detection, counting and tracking has received significant attention from the computer vision community of late. Many of the person detection techniques described so far in the literature work well in controlled environments, such as laboratory settings with a small number of people. This allows various assumptions to be made that simplify this complex problem. The performance of these techniques, however, tends to deteriorate when presented with unconstrained environments where pedestrian appearances, numbers, orientations, movements, occlusions and lighting conditions violate these convenient assumptions. Recently, 3D stereo information has been proposed as a technique to overcome some of these issues and to guide pedestrian detection. This thesis presents such an approach, whereby after obtaining robust 3D information via a novel disparity estimation technique, pedestrian detection is performed via a 3D point clustering process within a region-growing framework. This clustering process avoids using hard thresholds by using bio-metrically inspired constraints and a number of plan view statistics. This pedestrian detection technique requires no external training and is able to robustly handle challenging real-world unconstrained environments from various camera positions and orientations. In addition, this thesis presents a continuous detect-and-track approach, with additional kinematic constraints and explicit occlusion analysis, to obtain robust temporal tracking of pedestrians over time. These approaches are experimentally validated using challenging datasets consisting of both synthetic data and real-world sequences gathered from a number of environments. In each case, the techniques are evaluated using both 2D and 3D groundtruth methodologies

    Development of situation recognition, environment monitoring and patient condition monitoring service modules for hospital robots

    Get PDF
    An aging society and economic pressure have caused an increase in the patient-to-staff ratio leading to a reduction in healthcare quality. In order to combat the deficiencies in the delivery of patient healthcare, the European Commission in the FP6 scheme approved the financing of a research project for the development of an Intelligent Robot Swarm for Attendance, Recognition, Cleaning and Delivery (iWARD). Each iWARD robot contained a mobile, self-navigating platform and several modules attached to it to perform their specific tasks. As part of the iWARD project, the research described in this thesis is interested to develop hospital robot modules which are able to perform the tasks of surveillance and patient monitoring in a hospital environment for four scenarios: Intruder detection, Patient behavioural analysis, Patient physical condition monitoring, and Environment monitoring. Since the Intruder detection and Patient behavioural analysis scenarios require the same equipment, they can be combined into one common physical module called Situation recognition module. The other two scenarios are to be served by their separate modules: Environment monitoring module and Patient condition monitoring module. The situation recognition module uses non-intrusive machine vision-based concepts. The system includes an RGB video camera and a 3D laser sensor, which monitor the environment in order to detect an intruder, or a patient lying on the floor. The system deals with various image-processing and sensor fusion techniques. The environment monitoring module monitors several parameters of the hospital environment: temperature, humidity and smoke. The patient condition monitoring system remotely measures the following body conditions: body temperature, heart rate, respiratory rate, and others, using sensors attached to the patient’s body. The system algorithm and module software is implemented in C/C++ and uses the OpenCV image analysis and processing library and is successfully tested on Linux (Ubuntu) Platform. The outcome of this research has significant contribution to the robotics application area in the hospital environment
    corecore