792 research outputs found

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    ํ•ด๋ถ€ํ•™์  ์œ ๋„ PET ์žฌ๊ตฌ์„ฑ: ๋งค๋„๋Ÿฝ์ง€ ์•Š์€ ์‚ฌ์ „ ํ•จ์ˆ˜๋ถ€ํ„ฐ ๋”ฅ๋Ÿฌ๋‹ ์ ‘๊ทผ๊นŒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ, 2021. 2. ์ด์žฌ์„ฑ.Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsherโ€™s method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on the l1 norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the original l2 and proposed l1 Bowsher priors were conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposed l1 Bowsher prior methods than the original Bowsher prior. The original l2 Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposed l1 Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced by l1 norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Moreover, based on the formulation of l1 Bowsher prior, the unrolled network containing the conventional maximum-likelihood expectation-maximization (ML-EM) module was also proposed. The convolutional layers successfully learned the distribution of anatomically-guided PET images and the EM module corrected the intermediate outputs by comparing them with sinograms. The proposed unrolled network showed better performance than ordinary U-Net, where the regional uptake is less biased and deviated. Therefore, these methods will help improve the PET image quality based on the anatomical side information.์–‘์ „์ž๋ฐฉ์ถœ๋‹จ์ธต์ดฌ์˜ / ์ž๊ธฐ๊ณต๋ช…์˜์ƒ (PET/MRI) ๋™์‹œ ํš๋“ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ MR ์˜์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•ด๋ถ€ํ•™์  ์‚ฌ์ „ ํ•จ์ˆ˜๋กœ ์ •๊ทœํ™” ๋œ PET ์˜์ƒ ์žฌ๊ตฌ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์‹ฌ๋„์žˆ๋Š” ํ‰๊ฐ€๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. ํ•ด๋ถ€ํ•™ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๊ทœํ™” ๋œ PET ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์„ ์œ„ํ•ด ์ œ์•ˆ ๋œ ๋‹ค์–‘ํ•œ ์‚ฌ์ „ ์ค‘ 2์ฐจ ํ‰ํ™œํ™” ์‚ฌ์ „ํ•จ์ˆ˜์— ๊ธฐ๋ฐ˜ํ•œ Bowsher์˜ ๋ฐฉ๋ฒ•์€ ๋•Œ๋•Œ๋กœ ์„ธ๋ถ€ ๊ตฌ์กฐ์˜ ๊ณผ๋„ํ•œ ํ‰ํ™œํ™”๋กœ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์›๋ž˜ Bowsher ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด l1 norm์— ๊ธฐ๋ฐ˜ํ•œ Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜์™€ ๋ฐ˜๋ณต์ ์ธ ์žฌ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š” ์ด ๋งค๋„๋Ÿฝ์ง€ ์•Š์€ ์‚ฌ์ „ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ๋ฐ˜๋ณต์  ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์— ๋Œ€ํ•ด ๋‹ซํžŒ ํ•ด๋ฅผ ๋„์ถœํ–ˆ๋‹ค. ์›๋ž˜ l2์™€ ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜ ๊ฐ„์˜ ๋น„๊ต ์—ฐ๊ตฌ๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ ๋น„์ •์ƒ์ ์ธ PET ํก์ˆ˜๋ฅผ ๊ฐ€์ง„ ์ž‘์€ ๋ณ‘๋ณ€์€ ์›๋ž˜ Bowsher ์ด์ „๋ณด๋‹ค ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ๋ฐฉ๋ฒ•์œผ๋กœ ๋” ์ž˜ ๊ฐ์ง€๋˜์—ˆ๋‹ค. ์›๋ž˜์˜ l2 Bowsher๋Š” ํ•ด๋ถ€ํ•™์  ์˜์ƒ์—์„œ ๋ณ‘๋ณ€๊ณผ ์ฃผ๋ณ€ ์กฐ์ง ์‚ฌ์ด์— ๋ช…ํ™•ํ•œ ๋ถ„๋ฆฌ๊ฐ€ ์—†์„ ๋•Œ ์ž‘์€ ๋ณ‘๋ณ€์—์„œ์˜ PET ๊ฐ•๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ๋ฐฉ๋ฒ•์€ ํŠนํžˆ ๋ฐ˜๋ณต์  ์žฌ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฒ•์—์„œ l1 ๋…ธ๋ฆ„์— ์˜ํ•ด ์œ ๋„๋œ ํฌ์†Œ์„ฑ์— ๊ธฐ์ธํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ข…์–‘๊ณผ ์ฃผ๋ณ€ ์กฐ์ง ์‚ฌ์ด์— ๋” ๋‚˜์€ ๋Œ€๋น„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ PET๊ณผ MRI์˜ ํ•ด๋ถ€ํ•™์  ๊ฒฝ๊ณ„๊ฐ€ ์ผ์น˜ํ•˜๋Š” ์˜์—ญ์—์„œ PET ๊ฐ•๋„ ์ถ”์ •์— ๋Œ€ํ•œ ํŽธํ–ฅ์ด ๋” ๋‚ฎ๊ณ  ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ข…์†์„ฑ์ด ์ ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, l1Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜์˜ ๋‹ซํžŒ ํ•ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐ์กด์˜ ML-EM (maximum-likelihood expectation-maximization) ๋ชจ๋“ˆ์„ ํฌํ•จํ•˜๋Š” ํŽผ์ณ์ง„ ๋„คํŠธ์›Œํฌ๋„ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ปจ๋ณผ๋ฃจ์…˜ ๋ ˆ์ด์–ด๋Š” ํ•ด๋ถ€ํ•™์ ์œผ๋กœ ์œ ๋„ ์žฌ๊ตฌ์„ฑ๋œ PET ์ด๋ฏธ์ง€์˜ ๋ถ„ํฌ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ํ•™์Šตํ–ˆ์œผ๋ฉฐ, EM ๋ชจ๋“ˆ์€ ์ค‘๊ฐ„ ์ถœ๋ ฅ๋“ค์„ ์‚ฌ์ด๋…ธ๊ทธ๋žจ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€๊ฐ€ ์ž˜ ๋“ค์–ด๋งž๊ฒŒ ์ˆ˜์ •ํ–ˆ๋‹ค. ์ œ์•ˆ๋œ ํŽผ์ณ์ง„ ๋„คํŠธ์›Œํฌ๋Š” ์ง€์—ญ์˜ ํก์ˆ˜์„ ๋Ÿ‰์ด ๋œ ํŽธํ–ฅ๋˜๊ณ  ํŽธ์ฐจ๊ฐ€ ์ ์–ด, ์ผ๋ฐ˜ U-Net๋ณด๋‹ค ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ํ•ด๋ถ€ํ•™์  ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ PET ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์œ ์šฉํ•  ๊ฒƒ์ด๋‹ค.Chapter 1. Introduction 1 1.1. Backgrounds 1 1.1.1. Positron Emission Tomography 1 1.1.2. Maximum a Posterior Reconstruction 1 1.1.3. Anatomical Prior 2 1.1.4. Proposed l_1 Bowsher Prior 3 1.1.5. Deep Learning for MR-less Application 4 1.2. Purpose of the Research 4 Chapter 2. Anatomically-guided PET Reconstruction Using Bowsher Prior 6 2.1. Backgrounds 6 2.1.1. PET Data Model 6 2.1.2. Original Bowsher Prior 7 2.2. Methods and Materials 8 2.2.1. Proposed l_1 Bowsher Prior 8 2.2.2. Iterative Reweighting 13 2.2.3. Computer Simulations 15 2.2.4. Human Data 16 2.2.5. Image Analysis 17 2.3. Results 19 2.3.1. Simulation with Brain Phantom 19 2.3.2.Human Data 20 2.4. Discussions 25 Chapter 3. Deep Learning Approach for Anatomically-guided PET Reconstruction 31 3.1. Backgrounds 31 3.2. Methods and Materials 33 3.2.1. Douglas-Rachford Splitting 33 3.2.2. Network Architecture 34 3.2.3. Dataset and Training Details 35 3.2.4. Image Analysis 36 3.3. Results 37 3.4. Discussions 38 Chapter 4. Conclusions 40 Bibliography 41 Abstract in Korean (๊ตญ๋ฌธ ์ดˆ๋ก) 52Docto

    Training End-to-End Unrolled Iterative Neural Networks for SPECT Image Reconstruction

    Full text link
    Training end-to-end unrolled iterative neural networks for SPECT image reconstruction requires a memory-efficient forward-backward projector for efficient backpropagation. This paper describes an open-source, high performance Julia implementation of a SPECT forward-backward projector that supports memory-efficient backpropagation with an exact adjoint. Our Julia projector uses only ~5% of the memory of an existing Matlab-based projector. We compare unrolling a CNN-regularized expectation-maximization (EM) algorithm with end-to-end training using our Julia projector with other training methods such as gradient truncation (ignoring gradients involving the projector) and sequential training, using XCAT phantoms and virtual patient (VP) phantoms generated from SIMIND Monte Carlo (MC) simulations. Simulation results with two different radionuclides (90Y and 177Lu) show that: 1) For 177Lu XCAT phantoms and 90Y VP phantoms, training unrolled EM algorithm in end-to-end fashion with our Julia projector yields the best reconstruction quality compared to other training methods and OSEM, both qualitatively and quantitatively. For VP phantoms with 177Lu radionuclide, the reconstructed images using end-to-end training are in higher quality than using sequential training and OSEM, but are comparable with using gradient truncation. We also find there exists a trade-off between computational cost and reconstruction accuracy for different training methods. End-to-end training has the highest accuracy because the correct gradient is used in backpropagation; sequential training yields worse reconstruction accuracy, but is significantly faster and uses much less memory.Comment: submitted to IEEE TRPM

    DULDA: Dual-domain Unsupervised Learned Descent Algorithm for PET image reconstruction

    Full text link
    Deep learning based PET image reconstruction methods have achieved promising results recently. However, most of these methods follow a supervised learning paradigm, which rely heavily on the availability of high-quality training labels. In particular, the long scanning time required and high radiation exposure associated with PET scans make obtaining this labels impractical. In this paper, we propose a dual-domain unsupervised PET image reconstruction method based on learned decent algorithm, which reconstructs high-quality PET images from sinograms without the need for image labels. Specifically, we unroll the proximal gradient method with a learnable l2,1 norm for PET image reconstruction problem. The training is unsupervised, using measurement domain loss based on deep image prior as well as image domain loss based on rotation equivariance property. The experimental results domonstrate the superior performance of proposed method compared with maximum likelihood expectation maximazation (MLEM), total-variation regularized EM (EM-TV) and deep image prior based method (DIP)
    • โ€ฆ
    corecore