3,393 research outputs found

    Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Get PDF
    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected

    Storing, single photons in broadband vapor cell quantum memories

    Get PDF
    Single photons are an essential resource for realizing quantum technologies. Together with compatible quantum memories granting control over when a photon arrives, they form a foundational component both of quantum communication and quantum information processing. Quality solid-state single photon sources deliver on the high bandwidths and rates required for scalable quantum technology, but require memories that match these operational parameters. In this thesis, I report on quantum memories based on electromagnetically induced transparency and built in warm rubidium vapor, with such fast and high bandwidth interfaces in mind. I also present work on a heralded single photon source based on parametric downconversion in an optical cavity, operated in a bandwidth regime of a few 100s of megahertz. The systems are characterized on their own and together in a functional interface. As the photon generation process is spontaneous, the memory is implemented as a fully reactive device, capable of storing and retrieving photons in response to an asynchronous external trigger. The combined system is used to demonstrate the storage and retrieval of single photons in and from the quantum memory. Using polarization selection rules in the Zeeman substructure of the atoms, the read-out noise of the memory is considerably reduced from what is common in ground-state storage schemes in warm vapor. Critically, the quantum signature in the photon number statistics of the retrieved photons is successfully maintained, proving that the emission from the memory is dominated by single photons. We observe a retrieved single-photon state accuracy of gc,ret(2)=0.177(23)g_{c,\,\text{ret}}^{(2)}=0.177(23) for short storage times, which remains gc,ret(2)<0.5g_{c,\,\text{ret}}^{(2)}<0.5 throughout the memory lifetime of 680(50)680(50)\,ns. The end-to-end efficiency of the memory interfaced with the photon source is ηe2e=1.1(2)%\eta_{e2e}=1.1(2)\,\%, which will be further improved in the future by optimizing the operating regime. With its operation bandwidth of 370370\,MHz, our system opens up new possibilities for single-photon synchronization and local quantum networking experiments at high repetition rates

    Resolving Length Scale Dependent Transient Disorder Through an Ultrafast Phase Transition

    Full text link
    Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity to shift structural studies beyond idealized crystal models and investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here, we demonstrate such a measurement of CuIr2_{2}S4_{4} optically pumped from its low temperature Ir-dimerized phase. Dimers are optically removed without spatial correlation, generating a structure whose level of disorder depends strongly on length scale. The re-development of structural ordering over tens of picoseconds is directly tracked over both space and time as a non-equilibrium state is approached. This measurement demonstrates both the crucial role of local structure and disorder in non-equilibrium processes and the feasibility of accessing this information with state-of-the-art XFEL facilities.Comment: 14 page manuscript with 5 figures. 6 page Supplementary with 8 figures. 20 pages and 11 figures in tota

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Atoms in microcavities : detection and spectroscopy

    Get PDF
    This thesis presents work undertaken with cold rubidium atoms interacting with an optical microcavity. The optical microcavity used is unique in its design, being formed between an optical fibre and silicon micromirror. This allows direct optical access to the cavity mode, whilst the use of microfabrication techniques in the design means that elements of the system are inherently scalable. In addition, the parameters of the system are such that a single atom has a substantial impact on the cavity field. In this system, two types of signal arise from the atoms' interaction with the cavity field; a `reflection' signal and a `fluorescence' signal. A theoretical description for these signals is presented, followed by experiments which characterise the signals under a variety of experimental conditions. The thesis then explores two areas: the use of the microcavity signals for atom detection and the investigation of how higher atom numbers and, as a result, a larger cooperative interaction between the atoms and the cavity field, impacts the signals. First, the use of these signals to detect an effective single atom and individual atoms whilst falling and trapped is explored. The effectiveness of detection is parameterised in terms of detection confidence and signal to noise ratio, detection fidelity and dynamic range. In the second part of this thesis, the effect of higher atom numbers on the reflection and fluorescence signals is investigated. A method for increasing the atom number is presented, alongside experiments investigating the impact on the measured signals. This is followed by experiments which explore the dispersive nature of the atom-cavity interaction by measuring the excitation spectrum of the system in reflection and fluorescence. In doing so, it is shown that, for weak coupling, these two signals are manifestly different

    Coherent control of a superconducting qubit using light

    Full text link
    Quantum science and technology promise the realization of a powerful computational resource that relies on a network of quantum processors connected with low loss and low noise communication channels capable of distributing entangled states [1,2]. While superconducting microwave qubits (3-8 GHz) operating in cryogenic environments have emerged as promising candidates for quantum processor nodes due to their strong Josephson nonlinearity and low loss [3], the information between spatially separated processor nodes will likely be carried at room temperature via telecommunication photons (200 THz) propagating in low loss optical fibers. Transduction of quantum information [4-10] between these disparate frequencies is therefore critical to leverage the advantages of each platform by interfacing quantum resources. Here, we demonstrate coherent optical control of a superconducting qubit. We achieve this by developing a microwave-optical quantum transducer that operates with up to 1.18% conversion efficiency (1.16% cooperativity) and demonstrate optically-driven Rabi oscillations (2.27 MHz) in a superconducting qubit without impacting qubit coherence times (800 ns). Finally, we discuss outlooks towards using the transducer to network quantum processor nodes

    Quantum memory protocols for photonic solid-state devices

    Get PDF
    A photonic quantum memory (QM) is a device that has the capability of storing a quantum state of light and retrieving back after a controlled time. It is an important element in quantum information science and is, among other applications, a crucial device for quantum repeater architectures which have been proposed to overcome the loss and the decoherence issues in long distance transmission of photons. Rare earth ion doped solid state systems are promising candidates for QMs which combine the advantages of solid state systems, such as scalability and reduced experimental complexity, with the long coherence time typically found in atomic systems. In this thesis, I investigated three different QM protocols in a Pr3+:Y2SiO5 crystal. The first part describes here the first demonstration of the spectral hole memory (SHoMe) protocol which was proposed theoretically in 2009. This protocol relies on slowing down the light in a long-lived spectral hole and transferring the excitations to the spin state. We first prepare a spectral hole, then send an input pulse whose bandwidth is comparable with the hole and stop the compressed light in the crystal by transferring the off-resonant coherence to the spin state with an optical p pulse. Later a second p pulse transfers the coherence back and leads to the emission of the stored light. We reached a storage and retrieval efficiency of around 40% in the classical regime, and of 31% in the single photon level, with a signal-to-noise ratio of 33 ± 4 for a mean input photon number of 1. These results demonstrate the most efficient and noiseless spin-wave solid-state optical memory at the single photon level to date. The second part of the thesis describes new experiments using the well-known atomic frequency comb (AFC) protocol. It is based on tailoring the inhomogeneously broadened absorption profile of the rare earth with periodic absorptive peaks, which induces the re-emission of the absorbed light field after a certain time determined by the separation between the peaks. In this chapter I describe several AFC experiments. First I present the storage of frequency converted telecom photons into our crystal where we obtained a total efficiency of 1.9 ± 0.2 % for a storage time of 1.6 µs storage time and signal-to-noise ratio of more than 200 for a mean input photon number of 1. Then I discuss the results of improved excited state storage efficiency values for long storage times where we achieved 30% at short storage times and up to 17% at 10 µs storage time. And finally I present a spin-wave AFC experiment where we obtained a signal-to-noise ratio value of 28 ± 8 for a mean input photon number of 1, the highest value achieved so far for this kind of experiment. Finally, in the last part, I describe the first demonstration of a solid-state photon pair source with embedded multimode quantum memory. The aim of the protocol is to combine a single photon source and a QM in one ensemble as in the well-known Duan-Lukin-Zoller-Cirac (DLCZ) scheme however this time not in a cold atomic ensemble but in a solid-state crystal. The protocol takes advantage of the AFC protocol for rephasing the ions and obtaining efficient read-out. The use of AFC also makes the protocol temporally multi-mode. In the experiment, after the AFC preparation we send an on-resonant write pulse and detect the decayed Stokes photons which herald single spin excitations. At a later time a read pulse transfers the spin excitation back to the excited state and we detect the anti-Stokes photons. We show strong non-classical second order cross-correlations between the Stokes and anti-Stokes photons and demonstrate storage of 11 temporal modes. The results presented in this thesis represent a significant contribution to the field of solid-state quantum memories and an important steps towards the realization of scalable quantum network architectures with solid state systems.Una memòria quàntica (MQ) és un dispositiu que té la capacitat d'emmagatzemar l'estat quàntic de la llum i retornar-lo després d'un temps controlat.És un element important en la ciència de la informació quàntica i és un dispositiu crucial per a arquitectures de repetidors quàntica.Els sistemes d'estat sòlid basats en ions de terres rares són candidats prometedors per implementar MQs, ja que combinen els avantatges dels sistemes sòlids (escalabilitat i poca complexitat experimental) amb els llargs temps de coherència dels sistemes atòmics.En aquesta tesis he investigat tres protocols diferents de MQ en un cristall de Pr3+:Y2SiO5. La primera part descriu la primera demostració del protocol de memòria basat en forats espectrals (MFE), que va ser proposat teòricament el 2009. Aquest protocol es basa en disminuir la velocitat de la llum en un forat espectral de vida llarga i transferir les excitacions a un estat d'espín. Comencem preparant un forat espectral, després enviem un pols de llum amb una amplada espectral comparable a la del forat i aturem la llum comprimida en el cristall transferint la coherència fora de ressonància a l'estat d'espín amb un pols òptic.Seguidament un segon pols retorna la coherència i porta a l'emissió de la llum emmagatzemada. Aconseguim una eficiència d'emmagatzematge i recuperació de 40% en el règim clàssic i de 31% al nivell de fotons individuals, amb una relació senyal-soroll de 33 ±4 per un nombre mitjà de fotons incidents igual a 1. Aquests resultats demostren la memòria òtica operant al nivell de fotons individuals amb més eficiència i més lliure de soroll. La segona part de la tesis descriu nous experiments que utilitzen el protocol de pintes de freqüència atòmiques (PFA). Aquest està basat en modificar el perfil d'absorció eixamplat inhomogèniament dels ions de terres rares, creant pics d'absorció periòdics que indueixen la reemissió del camp de llum absorbit, després d'un cert temps que ve determinat per la separació dels pics. En aquest capítol descric varis experiments de PFA. Primer presento l'emmagatzematge en el nostre cristall de fotons amb freqüència convertida des de telecom, obtenint una eficiència total de 1.9 ± 0.2% per un temps d'emmagatzematge de 1.6us i una relació senyal-soroll de més de 200 per un nombre mitjà de fotons incidents igual a 1. Seguidament discuteixo els resultats obtinguts amb una millorada eficiència d'emmagatzematge en l'estat excitat per temps d'emmagatzematge llargs, on vam obtenir 30% per temps curts i 17% a 10us. I finalment presento un experiment de PFA amb ona d'espín on vam obtenir una relació senyal-soroll de 28 ± 8 per un nombre mitjà de fotons incidents igual a 1, el valor més alt assolit mai en un experiment d'aquest tipus. Finalment, en la última part, descric la primera demostració d'una font de parelles de fotons d'estat sòlid integrada amb una memòria quàntica multimodal. L'objectiu del protocol és combinar en un sol sistema una font de fotons individuals i una MQ, com té lloc en el conegut esquema de Duan-Lukin-Cirac-Zoller (DLCZ), però en aquest cas amb un cristall en lloc d'un sistema d'àtoms freds.El protocol agafa els avantatges del protocol PFA per refasar els ions i obtenir una recuperació eficient. Utilitzant PFA fa que el protocol sigui temporalment multimodal.En l'experiment, després de la preparació de la PFA, enviem un pols d'escriptura en ressonància i detectem un fotó Stokes que anuncia excitacions d'espín individuals. Un temps més tard, un pols de lectura transfereix l'excitació d'espín de tornada cap a l'estat excitat i detectem fotons anti-Stokes. Mostrem fortes correlacions de segon ordre no-clàssiques entre els fotons de Stokes i anti-Stokes i demostrem l'emmagatzematge de 11 modes temporals. Els resultats presentats en aquesta tesis representen una contribució significativa en el camp de les memòries quàntiques d'estat sòlid i un pas important cap a la realització d'arquitectures de xarxes quàntiques amb sistemes d'estat sòlidPostprint (published version

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip
    corecore