55,890 research outputs found

    Clustering and Recognition of Spatiotemporal Features through Interpretable Embedding of Sequence to Sequence Recurrent Neural Networks

    Full text link
    Encoder-decoder recurrent neural network models (RNN Seq2Seq) have achieved great success in ubiquitous areas of computation and applications. It was shown to be successful in modeling data with both temporal and spatial dependencies for translation or prediction tasks. In this study, we propose an embedding approach to visualize and interpret the representation of data by these models. Furthermore, we show that the embedding is an effective method for unsupervised learning and can be utilized to estimate the optimality of model training. In particular, we demonstrate that embedding space projections of the decoder states of RNN Seq2Seq model trained on sequences prediction are organized in clusters capturing similarities and differences in the dynamics of these sequences. Such performance corresponds to an unsupervised clustering of any spatio-temporal features and can be employed for time-dependent problems such as temporal segmentation, clustering of dynamic activity, self-supervised classification, action recognition, failure prediction, etc. We test and demonstrate the application of the embedding methodology to time-sequences of 3D human body poses. We show that the methodology provides a high-quality unsupervised categorization of movements

    Modeling Latent Attention Within Neural Networks

    Full text link
    Deep neural networks are able to solve tasks across a variety of domains and modalities of data. Despite many empirical successes, we lack the ability to clearly understand and interpret the learned internal mechanisms that contribute to such effective behaviors or, more critically, failure modes. In this work, we present a general method for visualizing an arbitrary neural network's inner mechanisms and their power and limitations. Our dataset-centric method produces visualizations of how a trained network attends to components of its inputs. The computed "attention masks" support improved interpretability by highlighting which input attributes are critical in determining output. We demonstrate the effectiveness of our framework on a variety of deep neural network architectures in domains from computer vision, natural language processing, and reinforcement learning. The primary contribution of our approach is an interpretable visualization of attention that provides unique insights into the network's underlying decision-making process irrespective of the data modality

    Trajectory-based Radical Analysis Network for Online Handwritten Chinese Character Recognition

    Full text link
    Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analysis network (TRAN) to firstly identify radicals and analyze two-dimensional structures among radicals simultaneously, then recognize Chinese characters by generating captions of them based on the analysis of their internal radicals. The proposed TRAN employs recurrent neural networks (RNNs) as both an encoder and a decoder. The RNN encoder makes full use of online information by directly transforming handwriting trajectory into high-level features. The RNN decoder aims at generating the caption by detecting radicals and spatial structures through an attention model. The manner of treating a Chinese character as a two-dimensional composition of radicals can reduce the size of vocabulary and enable TRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen. Evaluated on CASIA-OLHWDB database, the proposed approach significantly outperforms the state-of-the-art whole-character modeling approach with a relative character error rate (CER) reduction of 10%. Meanwhile, for the case of recognition of 500 unseen Chinese characters, TRAN can achieve a character accuracy of about 60% while the traditional whole-character method has no capability to handle them

    Towards Distortion-Predictable Embedding of Neural Networks

    Full text link
    Current research in Computer Vision has shown that Convolutional Neural Networks (CNN) give state-of-the-art performance in many classification tasks and Computer Vision problems. The embedding of CNN, which is the internal representation produced by the last layer, can indirectly learn topological and relational properties. Moreover, by using a suitable loss function, CNN models can learn invariance to a wide range of non-linear distortions such as rotation, viewpoint angle or lighting condition. In this work, new insights are discovered about CNN embeddings and a new loss function is proposed, derived from the contrastive loss, that creates models with more predicable mappings and also quantifies distortions. In typical distortion-dependent methods, there is no simple relation between the features corresponding to one image and the features of this image distorted. Therefore, these methods require to feed-forward inputs under every distortions in order to find the corresponding features representations. Our contribution makes a step towards embeddings where features of distorted inputs are related and can be derived from each others by the intensity of the distortion.Comment: 54 pages, 28 figures. Master project at EPFL (Switzerland) in 2015. For source code on GitHub, see https://github.com/axel-angel/master-projec

    MCRM: Mother Compact Recurrent Memory

    Full text link
    LSTMs and GRUs are the most common recurrent neural network architectures used to solve temporal sequence problems. The two architectures have differing data flows dealing with a common component called the cell state (also referred to as the memory). We attempt to enhance the memory by presenting a modification that we call the Mother Compact Recurrent Memory (MCRM). MCRMs are a type of a nested LSTM-GRU architecture where the cell state is the GRU hidden state. The concatenation of the forget gate and input gate interactions from the LSTM are considered an input to the GRU cell. Because MCRMs has this type of nesting, MCRMs have a compact memory pattern consisting of neurons that acts explicitly in both long-term and short-term fashions. For some specific tasks, empirical results show that MCRMs outperform previously used architectures.Comment: Submitted to AAAI-1

    A Generative Model for Volume Rendering

    Full text link
    We present a technique to synthesize and analyze volume-rendered images using generative models. We use the Generative Adversarial Network (GAN) framework to compute a model from a large collection of volume renderings, conditioned on (1) viewpoint and (2) transfer functions for opacity and color. Our approach facilitates tasks for volume analysis that are challenging to achieve using existing rendering techniques such as ray casting or texture-based methods. We show how to guide the user in transfer function editing by quantifying expected change in the output image. Additionally, the generative model transforms transfer functions into a view-invariant latent space specifically designed to synthesize volume-rendered images. We use this space directly for rendering, enabling the user to explore the space of volume-rendered images. As our model is independent of the choice of volume rendering process, we show how to analyze volume-rendered images produced by direct and global illumination lighting, for a variety of volume datasets

    Parallel Attention Mechanisms in Neural Machine Translation

    Full text link
    Recent papers in neural machine translation have proposed the strict use of attention mechanisms over previous standards such as recurrent and convolutional neural networks (RNNs and CNNs). We propose that by running traditionally stacked encoding branches from encoder-decoder attention- focused architectures in parallel, that even more sequential operations can be removed from the model and thereby decrease training time. In particular, we modify the recently published attention-based architecture called Transformer by Google, by replacing sequential attention modules with parallel ones, reducing the amount of training time and substantially improving BLEU scores at the same time. Experiments over the English to German and English to French translation tasks show that our model establishes a new state of the art.Comment: ICMLA 2018, 6 page

    Image Captioning Based on a Hierarchical Attention Mechanism and Policy Gradient Optimization

    Full text link
    Automatically generating the descriptions of an image, i.e., image captioning, is an important and fundamental topic in artificial intelligence, which bridges the gap between computer vision and natural language processing. Based on the successful deep learning models, especially the CNN model and Long Short-Term Memories (LSTMs) with attention mechanism, we propose a hierarchical attention model by utilizing both of the global CNN features and the local object features for more effective feature representation and reasoning in image captioning. The generative adversarial network (GAN), together with a reinforcement learning (RL) algorithm, is applied to solve the exposure bias problem in RNN-based supervised training for language problems. In addition, through the automatic measurement of the consistency between the generated caption and the image content by the discriminator in the GAN framework and RL optimization, we make the finally generated sentences more accurate and natural. Comprehensive experiments show the improved performance of the hierarchical attention mechanism and the effectiveness of our RL-based optimization method. Our model achieves state-of-the-art results on several important metrics in the MSCOCO dataset, using only greedy inference

    A GRU-based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition

    Full text link
    In this study, we present a novel end-to-end approach based on the encoder-decoder framework with the attention mechanism for online handwritten mathematical expression recognition (OHMER). First, the input two-dimensional ink trajectory information of handwritten expression is encoded via the gated recurrent unit based recurrent neural network (GRU-RNN). Then the decoder is also implemented by the GRU-RNN with a coverage-based attention model. The proposed approach can simultaneously accomplish the symbol recognition and structural analysis to output a character sequence in LaTeX format. Validated on the CROHME 2014 competition task, our approach significantly outperforms the state-of-the-art with an expression recognition accuracy of 52.43% by only using the official training dataset. Furthermore, the alignments between the input trajectories of handwritten expressions and the output LaTeX sequences are visualized by the attention mechanism to show the effectiveness of the proposed method.Comment: Accepted by ICDAR 2017 conferenc

    Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks

    Full text link
    Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion primitives), which have to be defined a-priori or require complex segmentation algorithms. In contrast, recent advances in the field of neural networks and especially deep learning have demonstrated that sub-symbolic representations that can be learned end-to-end usually outperform more traditional approaches, for applications such as machine translation. In this paper we propose a generative model that learns a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks (RNNs) and sequence-to-sequence learning. Our approach does not require any segmentation or manual feature engineering and learns a distributed representation, which is shared for all motions and descriptions. We evaluate our approach on 2,846 human whole-body motions and 6,187 natural language descriptions thereof from the KIT Motion-Language Dataset. Our results clearly demonstrate the effectiveness of the proposed model: We show that our model generates a wide variety of realistic motions only from descriptions thereof in form of a single sentence. Conversely, our model is also capable of generating correct and detailed natural language descriptions from human motions
    • …
    corecore