4 research outputs found

    If You Like It, GAN It. Probabilistic Multivariate Times Series Forecast With GAN

    Full text link
    The contribution of this paper is two-fold. First, we present ProbCast - a novel probabilistic model for multivariate time-series forecasting. We employ a conditional GAN framework to train our model with adversarial training. Second, we propose a framework that lets us transform a deterministic model into a probabilistic one with improved performance. The motivation of the framework is to either transform existing highly accurate point forecast models to their probabilistic counterparts or to train GANs stably by selecting the architecture of GAN's component carefully and efficiently. We conduct experiments over two publicly available datasets namely electricity consumption dataset and exchange-rate dataset. The results of the experiments demonstrate the remarkable performance of our model as well as the successful application of our proposed framework

    Short-Term Traffic Forecasting Using High-Resolution Traffic Data

    Full text link
    This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data. This is the raw data obtained from fixed sensors in urban roads. Time series of such raw data exhibit heavy fluctuations from one time step to the next (typically on the order of 0.1-1 second). Short-term forecasts (10-30 seconds into the future) of traffic conditions are critical for traffic operations applications (e.g., adaptive signal control). But traffic forecasting tools in the literature deal predominantly with 3-5 minute aggregated data, where the typical signal cycle is on the order of 2 minutes. This renders such forecasts useless at the operations level. To this end, we model the traffic forecasting problem as a matrix completion problem, where the forecasting inputs are mapped to a higher dimensional space using kernels. The formulation allows us to capture both nonlinear dependencies between forecasting inputs and outputs but also allows us to capture dependencies among the inputs. These dependencies correspond to correlations between different locations in the network. We further employ adaptive boosting to enhance the training accuracy and capture historical patterns in the data. The performance of the proposed methods is verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms

    Pattern Sensitive Prediction of Traffic Flow Based on Generative Adversarial Framework

    No full text
    corecore