6 research outputs found

    IMPROVED LICENSE PLATE LOCALIZATION ALGORITHM BASED ON MORPHOLOGICAL OPERATIONS

    Get PDF
    Automatic License Plate Recognition (ALPR) systems have become an important tool to track stolen cars, access control, and monitor traffic. ALPR system consists of locating the license plate in an image, followed by character detection and recognition. Since the license plate can exist anywhere within an image, localization is the most important part of ALPR and requires greater processing time. Most ALPR systems are computationally intensive and require a high-performance computer. The proposed algorithm differs significantly from those utilized in previous ALPR technologies by offering a fast algorithm, composed of structural elements which more precisely conducts morphological operations within an image, and can be implemented in portable devices with low computation capabilities. The proposed algorithm is able to accurately detect and differentiate license plates in complex images. This method was first tested through MATLAB with an on-line public database of Greek license plates which is a popular benchmark used in previous works. The proposed algorithm was 100% accurate in all clear images, and achieved 98.45% accuracy when using the entire database which included complex backgrounds and license plates obscured by shadow and dirt. Second, the efficiency of the algorithm was tested in devices with low computational processing power, by translating the code to Python, and was 300% faster than previous work

    CROCUFID: A Cross-Cultural Food Image Database for Research on Food Elicited Affective Responses

    Get PDF
    We present CROCUFID: a CROss-CUltural Food Image Database that currently contains 840 images, including 479 food images with detailed metadata and 165 images of non-food items. The database includes images of sweet, savory, natural, and processed food from Western and Asian cuisines. To create sufficient variability in valence and arousal we included images of food with different degrees of appetitiveness (fresh, unfamiliar, molded or rotten, spoiled, and partly consumed). We used a standardized photographing protocol, resulting in high resolution images depicting all food items on a standard background (a white plate), seen from a fixed viewing (45°) angle. CROCUFID is freely available under the CC-By Attribution 4.0 International license and hosted on the OSF repository. The advantages of the CROCUFID database over other databases are its (1) free availability, (2) full coverage of the valence – arousal space, (3) use of standardized recording methods, (4) inclusion of multiple cuisines and unfamiliar foods, (5) availability of normative and demographic data, (6) high image quality and (7) capability to support future (e.g., virtual and augmented reality) applications. Individuals from the United Kingdom (N = 266), North-America (N = 275), and Japan (N = 264) provided normative ratings of valence, arousal, perceived healthiness, and desire-to-eat using visual analog scales (VAS). In addition, for each image we computed 17 characteristics that are known to influence affective observer responses (e.g., texture, regularity, complexity, and colorfulness). Significant differences between groups and significant correlations between image characteristics and normative ratings were in accordance with previous research, indicating the validity of CROCUFID. We expect that CROCUFID will facilitate comparability across studies and advance experimental research on the determinants of food-elicited emotions. We plan to extend CROCUFID in the future with images of food from a wide range of different cuisines and with non-food images (for applications in for instance neuro-physiological studies). We invite researchers from all parts of the world to contribute to this effort by creating similar image sets that can be linked to this collection, so that CROCUFID will grow into a truly multicultural food database

    Methods to assess food-evoked emotion across cultures

    Get PDF

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    Automatic semantic and geometric enrichment of CityGML 3D building models of varying architectural styles with HOG-based template matching

    Get PDF
    While the number of 3D geo-spatial digital models of buildings with cultural heritage interest is burgeoning, most lack semantic annotation that could be used to inform users of mobile and desktop applications about the architectural features and origins of the buildings. Additionally, while automated reconstruction of 3D building models is an active research area, the labelling of architectural features (objects) is comparatively less well researched, while distinguishing between different architectural styles is less well researched still. Meanwhile, the successful automatic identification of architectural objects, typified by a comparatively less symmetrical or less regular distribution of objects on façades, particularly on older buildings, has so far eluded researchers. This research has addressed these issues by automating the semantic and geometric enrichment of existing 3D building models by using Histogram of Oriented Gradients (HOG)-based template matching. The methods are applied to the texture maps of 3D building models of 20th century styles, of Georgian-Regency (1715-1830) style and of the Norman (1066 to late 12th century) style, where the amalgam of styles present on buildings of the latter style necessitates detection of styles of the Gothic tradition (late 12th century to present day). The most successful results were obtained when applying a set of heuristics including the use of real world dimensions, while a Support Vector Machine (SVM)-based machine learning approach was found effective in obviating the need for thresholds on matchscores when making detection decisions
    corecore