203,628 research outputs found
Image databases: Problems and perspectives
With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined
High resolution ultrasonic spectroscopy system for nondestructive evaluation
With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors
GPGPU for track finding in High Energy Physics
The LHC experiments are designed to detect large amount of physics events
produced with a very high rate. Considering the future upgrades, the data
acquisition rate will become even higher and new computing paradigms must be
adopted for fast data-processing: General Purpose Graphics Processing Units
(GPGPU) is a novel approach based on massive parallel computing. The intense
computation power provided by Graphics Processing Units (GPU) is expected to
reduce the computation time and to speed-up the low-latency applications used
for fast decision taking. In particular, this approach could be hence used for
high-level triggering in very complex environments, like the typical inner
tracking systems of the multi-purpose experiments at LHC, where a large number
of charged particle tracks will be produced with the luminosity upgrade. In
this article we discuss a track pattern recognition algorithm based on the
Hough Transform, where a parallel approach is expected to reduce dramatically
the execution time.Comment: 6 pages, 4 figures, proceedings prepared for GPU-HEP 2014 conference,
submitted to DESY-PROC-201
The Use of Metaphor Graphics to Depict Sleep Research Results
Many nurses are not familiar with the highly technical language of research and the types of graphics that researchers use to communicate findings, creating a major barrier to research utilization in nursing. In an effort to find alternative approaches to displaying research results, W.G. Cole introduced metaphor graphics a decade ago as a way of graphically representing knowledge. He proposed that data be summarized using visual metaphors - i.e., abstract signs and symbols - to show patterns and convey meaning. Viewing human beings as imperfect processors of information who tend to reason using pattern recognition and mental models, Cole hypothesized that visual metaphors would improve the uptake of scientific information. The author explores an effort to incorporate and evaluate metaphor graphics in the communication of sleep-promotion research
Infrared face recognition: a comprehensive review of methodologies and databases
Automatic face recognition is an area with immense practical potential which
includes a wide range of commercial and law enforcement applications. Hence it
is unsurprising that it continues to be one of the most active research areas
of computer vision. Even after over three decades of intense research, the
state-of-the-art in face recognition continues to improve, benefitting from
advances in a range of different research fields such as image processing,
pattern recognition, computer graphics, and physiology. Systems based on
visible spectrum images, the most researched face recognition modality, have
reached a significant level of maturity with some practical success. However,
they continue to face challenges in the presence of illumination, pose and
expression changes, as well as facial disguises, all of which can significantly
decrease recognition accuracy. Amongst various approaches which have been
proposed in an attempt to overcome these limitations, the use of infrared (IR)
imaging has emerged as a particularly promising research direction. This paper
presents a comprehensive and timely review of the literature on this subject.
Our key contributions are: (i) a summary of the inherent properties of infrared
imaging which makes this modality promising in the context of face recognition,
(ii) a systematic review of the most influential approaches, with a focus on
emerging common trends as well as key differences between alternative
methodologies, (iii) a description of the main databases of infrared facial
images available to the researcher, and lastly (iv) a discussion of the most
promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap
with arXiv:1306.160
Pattern recognition of satellite cloud imagery for improved weather prediction
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products
LiveCap: Real-time Human Performance Capture from Monocular Video
We present the first real-time human performance capture approach that
reconstructs dense, space-time coherent deforming geometry of entire humans in
general everyday clothing from just a single RGB video. We propose a novel
two-stage analysis-by-synthesis optimization whose formulation and
implementation are designed for high performance. In the first stage, a skinned
template model is jointly fitted to background subtracted input video, 2D and
3D skeleton joint positions found using a deep neural network, and a set of
sparse facial landmark detections. In the second stage, dense non-rigid 3D
deformations of skin and even loose apparel are captured based on a novel
real-time capable algorithm for non-rigid tracking using dense photometric and
silhouette constraints. Our novel energy formulation leverages automatically
identified material regions on the template to model the differing non-rigid
deformation behavior of skin and apparel. The two resulting non-linear
optimization problems per-frame are solved with specially-tailored
data-parallel Gauss-Newton solvers. In order to achieve real-time performance
of over 25Hz, we design a pipelined parallel architecture using the CPU and two
commodity GPUs. Our method is the first real-time monocular approach for
full-body performance capture. Our method yields comparable accuracy with
off-line performance capture techniques, while being orders of magnitude
faster
- …
